

"Wireless over Pseudowires" Ready for Prime Time

Presented by: Giles Heron Director of Data Network Consulting, Tellabs May 2, 2007

Agenda

- The challenge of mobile backhaul
- "Wireless over Pseudowires"
- Case studies
- Network synchronization
- Future migration to all-IP

The Challenge of Mobile Backhaul What is the Backhaul Network?

- Connects the mobile base stations (BTS/NodeB) to the radio controllers (BSC/RNC) which sit at the edge of the mobile core
- Also known as the RAN (Radio Access Network)

The Challenge of Mobile Backhaul The Bandwidth Explosion - impact of HSPA

Dramatic increase in capacity in the backhaul network

Property of Tellabs, Inc. All rights reserved. 4

UMTS

The Challenge of Mobile Backhaul The Bandwidth Explosion – Margin Squeeze

The operator's goal - decouple cost from capacity

The Challenge of Mobile Backhaul Technology Evolution – TDM to ATM to IP

Wireless over Pseudowires MPLS Pseudowires

• Pseudowires decouple service from transport

- > Enables convergence of all services over one network
- > Which enables use of the cheapest available transport

Enables operator to decouple cost from capacity

Wireless over Pseudowires Generic view of Pseudowire Backhaul

- > Pseudowires create circuit layer on top of IP/MPLS
 - Use MPLS LSPs for protection
 - Reparent Base Stations by redirecting circuit endpoints

Wireless over Pseudowires Using Pseudowire Switching in the RAN

- > Cell-Site boxes may be small "pizza box" MSA devices
 - No routing or signalling
 - Pseudowire forwarding, no L3
- > No protection available from cell-site to hub (copper T1/E1, or microwave)
 - But carriers wish to make use of protection from the hub site towards the core

Wireless over Pseudowires Using Pseudowire Switching to Cross the Core

- > Carriers want to keep RAN and core separate
- > Carriers sometimes need to reparent to BSCs or RNCs outside the RAN
- > Pseudowires can be switched at the RAN/core boundary

Case Studies *Rural Deployment – Optimising Capacity*

- Capacity Today
 - > Leased T1/E1 or PDH microwave from cell site to hub site
 - > Leased SONET/SDH (or SONET/SDH microwave) from hub to RNC site

Solution: MPLS at Hub Site

- > Maintain ATM or TDM T1/E1 circuits to hub site
- > Use MPLS PWE from hub site to RNC site
 - Enables clear-channel transport (plus option to use Ethernet if available)
 - Enables statistical gain between cell-sites

Case Studies Suburban Deployment – Adding HSDPA

Capacity Today

- > Leased T1/E1 or PDH microwave from cell site to hub site
- > SDH/SONET from hub site to RNC site

Solution: MPLS at Cell Site with DSL offload

- > Maintain ATM or TDM T1/E1 circuits to hub site
- > Add wholesale ADSL capacity for 3G data using PWE over IP

Pseudowires over DSL Using MPLS over IP (RFC4023)

Pseudowires over DSL Using multiple DSL loops

- Multiple DSL loops may be required to enable full-speed HSDPA
 - > Per VC load-sharing gives no benefit as typically one VC for HSDPA
 - > Per AAL2 session load-sharing restricts per-user performance
 - > Per packet load balancing works, but:
 - Requires MPLS/IP tunnel per DSL loop with BFD to detect failures
 - Overall performance limited to N x speed of slowest DSL loop
 - Requires sequence number in the pseudowire Control Word

Pseudowires over DSL Using MPLS over IP (RFC4023)

"Overlay Network" causes control plane challenges

- > tLDP session as per RFC4447 can be used to provision PWs, but failure detection will be slow
- > VCCV-BFD from PE to PE provides faster detection
 - As no QoS in DSL network VCCV packets may be lost due to overload
- > Need mechanism to notify DSL network failures to the RNC

Case Studies Urban Deployment – Fibre to the Cell Site

Capacity Today

- > Leased T1/E1 or PDH microwave from cell site to hub location
- > SDH/SONET from hub location to RNC site

Solution: MPLS at Cell Site

- > Use FE or GigE over fibre from cell site to hub location
- > Use GigE or 10GigE over fibre from hub site to RNC site

Synchronization Distributed

Use external clock at each site

> Expensive proposition to provide a clock at every cell-site!

Synchronization Synchronous Physical Layer

- Synchronise all elements from the physical layer
- Distribute timing from one element to the next
- Well known and understood using SDH/SONET or E1/T1 circuits
- Ethernet Based
 - **>** G.8261
- Good fit for rural and suburban scenarios above
- Good fit for urban scenario if deploying a dedicated network

Synchronization Adaptive Timing

- Monitor jitter buffer levels
- Perform averaging and low pass filter to detect jitter
 - > Tolerant to packet loss and reordering
 - > Vulnerable to low frequency jitter components

Two methods:

- > Synchronise each pseudowire
- > Synchronise node using "synchronisation pseudowire"
 - P2MP 64k CESoPSN Pseudowire?
 - Point-to-Multipoint pseudowires?

Synchronization IEEE1588 Precision Time Protocol

- Hierarchical tree with master/slave clocks
- Designed for testing/automation applications
 - > Being enhanced for telecom applications
- Future TICTOC?

Mobile Technology Migration Enable IP – reducing cost per bit - HSPA, R6, LTE

3G Backhaul Using MPLS Migration to R5/R6

3G Backhaul Using MPLS *LTE*

NodeBs (now eNB) are meshed from a data plane perspective

Enables call handover between adjacent cell-sites

Hierarchical IP-VPN model

- Optional PWE in access (cell site to hub)
- VRFs in aggregation (hub to RNC site)
- VRFs in mobile core

"Wireless over Pseudowires" Ready for Prime Time

Presented by: Giles Heron Director of Data Network Consulting, Tellabs May 2, 2007

Backup Slides

- GSM Backhaul using TDM Pseudowires (SAToP or CESoPSN)
- GPRS Transport using FR Pseudowires
- UMTS Backhaul ATM VP Pseudowires
- UMTS Backhaul using ATM VC Pseudowires
 - > VC Cell Pseudowires
 - > AAL5 SDU Pseudowires
 - > IP/ATM Termination into VRF

CDMA 1xRTT Backhaul using HDLC Pseudowires

GSM Backhaul Using MPLS TDM Pseudowires using SAToP or CESoPSN

GSM - GPRS Transport Using MPLS FR Pseudowires - Migrating to IP VPN

UMTS Backhaul Using MPLS ATM VP Pseudowires

PW Encapsulation

- + Simple to provision
- Inefficient transport
- Requires CBR QoS for VP

UMTS Backhaul Using MPLS ATM VC Pseudowires

- Complex to provision

UMTS Backhaul Using MPLS ATM VC Cell Pseudowires

UMTS Backhaul Using MPLS ATM AAL5 SDU Pseudowires

UMTS Backhaul Using MPLS IP/ATM Termination into VRF

CDMA 1xRTT Backhaul Using MPLS HDLC Pseudowires

