

IPT CASE STUDY Ohio Colleges and Universities: Adding Video to Your Converged Network

Paul Schopis Director Network Engineering & Operations/ Associate Director Third Frontier Network/OARnet

What Will Be Covered

Disclaimer A little history The design and building of the TFN Video and Advanced Services as a demonstration of TFN Business model Problems & Solutions

<u>Disclaimer</u>

- I am not associated with Ohio University (my son does go to school there)
- I am associated with OARnet/TFN which is a division of the Ohio Supercomputer Center
- OSC is a project of the State Board of Regents
- OBOR uses Ohio State University as the fiduciary agent for the program e.g. I am an employee of OSU
- OSU and OU are two different institutions
- OSU is a Big Ten School e.g. Football is <u>VERY</u> important (2002 National Champs)
- OU is a MAC school e.g. Football traditionally is not very good

A Little History

OARnet Background

- Founded in 1987 as part of the Ohio Supercomputing Center
- 90+ higher ed member institutions
- Board of Regents funding
- OSTEER advisory council
- Internet2 GigaPOP

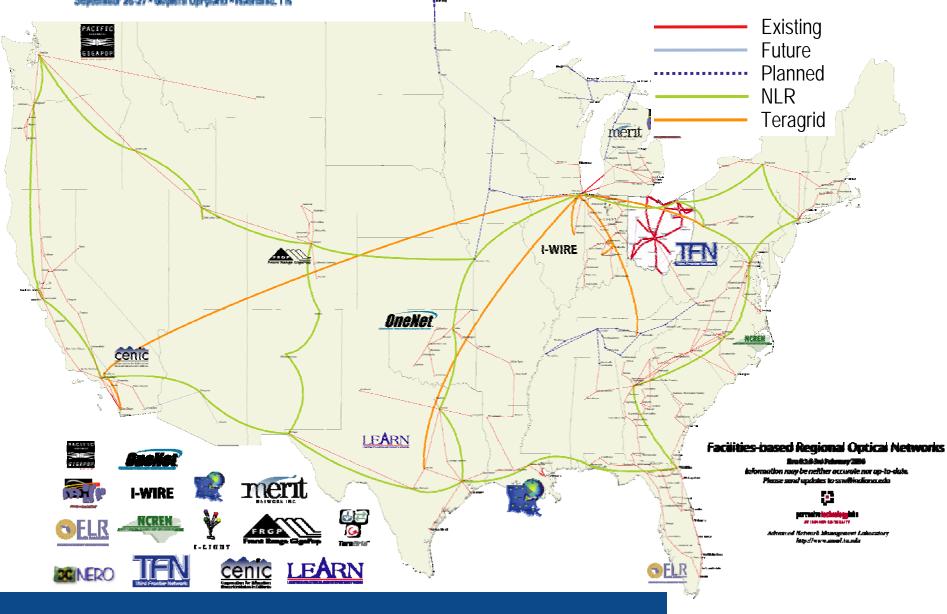
Third Frontier Network

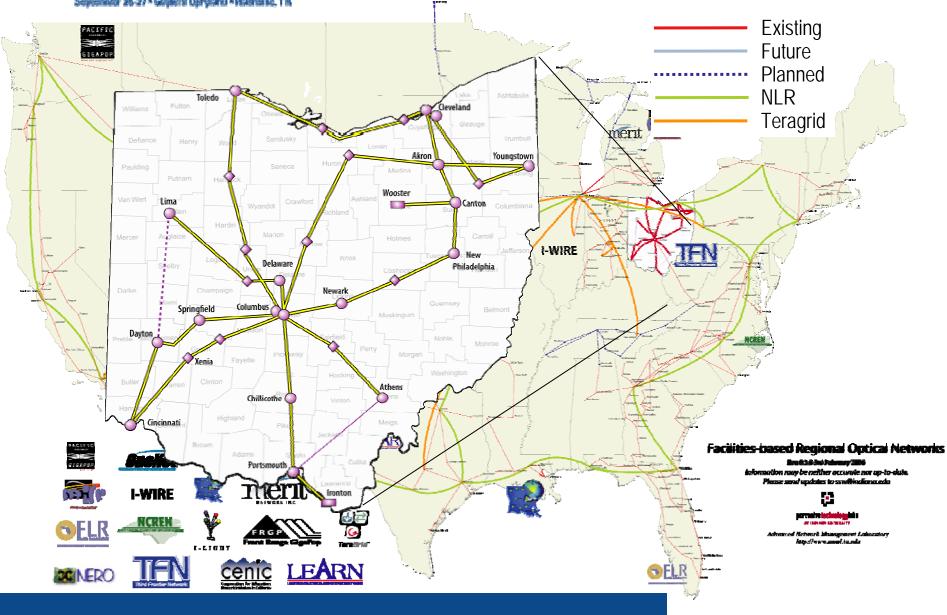
- Phase 1: replace backbone with dark fiber
- Phase 2: connect 17 universities to network with dark fiber or gig circuits
- Phase 3: connect other universities and colleges
- Phase 4: connect other partners

Dark Fiber Acquisition

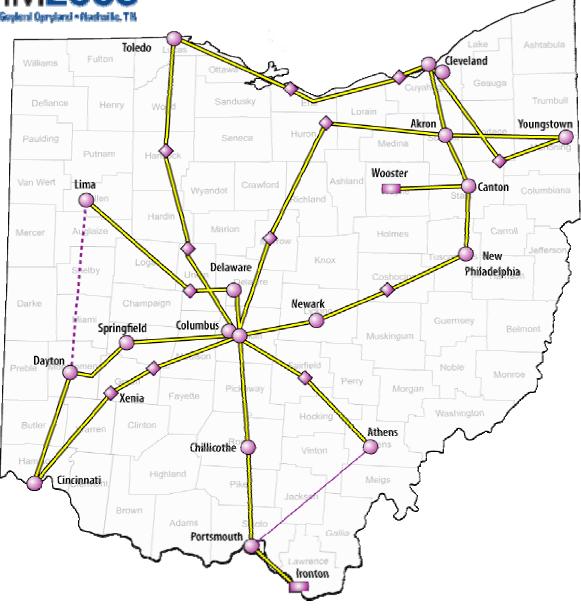
- RFP issued during Summer of 2002
- Dark fiber was strongly preferred, but leased services considered
- Vendors who bid dark fiber were required to offer a minimum of a single pair of fiber over their network

Dark Fiber Acquisition


- Determined that leased lambdas were too expensive and not widely available
- Selected a bid from Spectrum Networks for single pair of fibers
 - American Electric Power (AEP)
 - Williams Communications (Wiltel)


Dark Fiber Acquisition

- \$4.6 M for 20 year IRUs
- \$342K/yr for maintenance
- 1600+ route miles
- Truewave, SMF-28, LEAF or Terra Light Fiber
- Aerial and buried



As of 4/20/2006

TFN Financing

- \$21M investment
- Financing from Ohio State University
 - Loan for fiber (\$7M)
 - Short-term financing (\$2M)
- Financing from state capital budget (\$8.5M)
 - Equipment
 - Last mile to 17 institutions

Equipment

- Cisco 15454 integrated solution (DWDM)
 - all of the amps, mux/demux etc. integrated
- Multi Service Transport Platform (MSTP)
 ITU G.709 compliant
- Cisco routers (GSR 12000) and switches
- Juniper M7i routers

Implementation

- Using MPLS
- 2.5 gig backbone
- Hired 2 optical engineers
- Using Cisco Transport Manager software
- First fiber cut tested redundancy

Video and Advanced Services as a Demonstration of TFN

Video and Advanced Services as a Demonstration of TFN

- H.323 Video
 - IntraState Service
 - Commons
 - Testing programs
- Grid Video Services
- Satellite Applications
- Ubiquitous deployment is stated goal

IntraState Service

- Provide MCU service at cost to campuses
- Provide Site Certification
- Work through issues with campuses
- Developed H.323 Beacon for end users
- 24/7 NOC
- Connections up 768Kbps
- Streaming/Archiving service

I2 Commons

- Provide MCU services
- Provide Site Certification
- Work through issues with networks/GigaPOPs
- Developed H.323 Beacon for end users
- 24/7 NOC
- Connections up 768Kbps
- Streaming/Archiving service
- Testing service on various applications sponsored by I2

Business Model

- Need to assess equipment size i.e.how many users need to be supported
- Determine if it is cheaper to buy own equipment or subscribe to service
- What is the enterprise/organizational needs

Equipment Needed

- MCU
- Gatekeeper
- Video clients to support service

Equipment Needed High End System

- MCU \$259,894
- Gatekeeper \$327,097
- Video clients to support service \$93,136
- Total \$734,867

Equipment Needed Low End System

- MCU 20 user \$58,000
- Gatekeeper \$17,912
- Video clients to support service \$93,136
- Total \$169,048

Our Cost Recovery Model

- \$400 per month i.e. \$4,800
- 30 conferences a month
- \$400 plus \$50 for every site over 2 when over 30 conferences
- Basic cost per conference = \$13.34

Example

- Let's eliminate video client cost as a sunk cost i.e.no matter how you do this you need those
- High end needs to run ~44,000 conferences to break even
- need 122 minimum users

Example 2

- Same basic premise
- Low end needs to run ~5,691conferences to break even
- need 16 minimum users

Conclusion

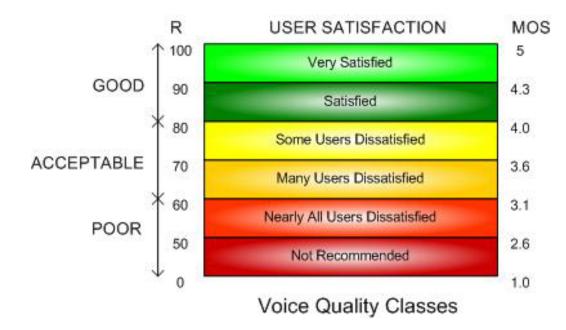
- Need to carefully assess needs
- One needs to also consider HR overhead we did not look at that
- To run a large video conferencing operation takes significant resources

H.323 Beacon

Basics of Voice and Video over IP

performance measurement

- Voice and Video Traffic are inherently different from Data Traffic
 - They use Signaling protocols such as H.323, SIP, ...
 - Media (Voice and Video payload) is delivered over IP using RTP packets irrespective of which codec or end-point technology (PC-based Vs Appliance-based)
- General ICMP and UDP based tools fail to totally capture the performance bottlenecks faced by actual voice and video traffic at the end-host and in the network
 - i.e.- ping, traceroute, Iperf, pathrate, ... don't suffice!
 - We need to measure end-user experience of Voice and Video over IP applications also!



Measuring End-user experience...

- Two approaches to evaluating end-user experience of audiovisual quality
 - Subjective Measurements
 - Involve human participants to rate audiovisual quality Can you hear me now?
 - Mean Opinion Score (MOS) Ranking technique (ITU-T P.800) Not just "Good"!
 - Objective Measurements
 - Automated techniques to rate audiovisual quality
 - "E-Model" [ITU-T G.107]
 - Perceptual Evaluation of Speech Quality (PESQ) [ITU-T P.862]

Mean Opinion Score (MOS) Concept

Quality Scale	Score	Listening Effort Scale
Excellent	5	No effort required
Good	4	No appreciable effort required
Fair	3	Moderate effort required
Poor	2	Considerable effort required
Bad	1	No meaning understood with reasonable effort

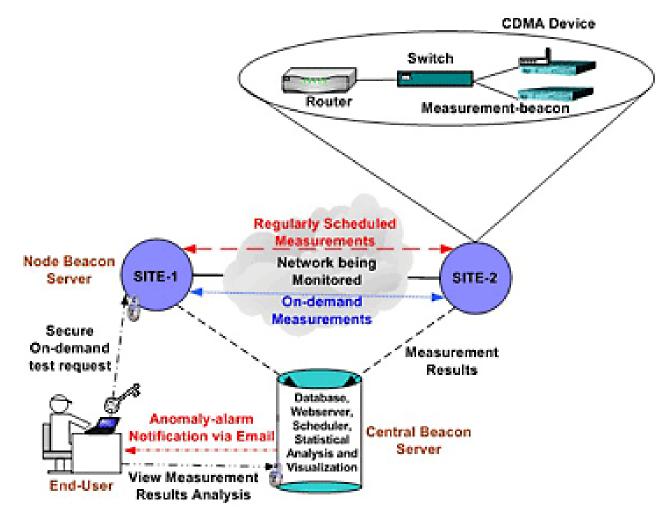
What are the other common endto-end performance problems?

- Common problems involving endpoint devices
 - Failure of audio and video hardware, out dated or buggy endpoint application software
 - Faulty connections and configurations of audio and video interfaces
 - Lack of lip-synchronization
 - Mis-configured jitter buffer sizes
 - Non inter-operable end-point application software
 - Lack of forward error correction and echo cancellation mechanisms in end-point clients
 - Lack of end-user training

<u>Common End-to-End performance</u> problems in VVoIP Systems (2)

- Common problems involving network devices
 - Insufficient network capacity for handling multiple high data rate videoconferencing calls
 - Excessive delay, loss, jitter, out of order packets and re-ordered packets in the network
 - Duplex mis-match problems
 - Traffic congestion at peak-usage periods of the network
 - Mis-configured priorities for real-time audio and video traffic streams in the network
 - Asymmetric routing with excessive delays on one path
 - Lack of network engineering resource personnel

<u>Common End-to-End performance</u> problems in VVoIP Systems (3)


- Common problems involving application service devices
 - Misconfigured firewalls that block required ports
 - Non-H.323 friendly NATs
 - Misconfigured devices
 - MCUs
 - Gatekeeper
 - Gateway devices
 - Outdated or buggy application-service device application software

ActiveMON

Generalized version of H.323 beacon

ActiveMon Architecture

ActiveMon Framework Features

- Data-Generator Module for an application-specific network measurement toolkit
- Central Data-Collector-Sanitizer Module to centrally collect and store sensible measurements data; E.g. this module avoids collecting '–ve' Delay or MOS values, etc.
- Optimized Database Schema to efficiently store massive amounts of measurement data with minimal redundancy; saves disk space and facilities quicker data mining

ActiveMon Measurement Toolkit

Measured Characteristics	ΤοοΙ
Round-trip delay	Ping
High-precision one-way delay	OWAMP
Topology and route changes	Traceroute
Bandwidth capacity: Per-hop	Pathchar
Available bandwidth	Pathload
Bottleneck bandwidth	Pathrate
UDP transfer bandwidth, Jitter and Loss	Iperf
Performance of interactive audio/video streams (MOS)	H.323 Beacon

ActiveMon can be easily enhanced to support other tools as well...

ActiveMon Framework Features (2)

- Scalable Scheduler Module for handling networkwide on-going and on-demand measurements; scheduling supports regulation and prevents measurement conflicts due to resource sharing
- Alarm Generator Module digests, analyzes and generates alarms based on an efficient anomaly detection scheme that aims at minimum false-alarms; alarm notification via e-mail is supported
- Easily Customizable Visualization Module with tabular and network health Weather map interfaces; alarm-context sensitive coloring of measurements information is supported
- Security Configurations to avoid compromise of measurement infrastructure resources

<u>Is ActiveMon fully developed and</u> <u>available as open-source?</u>

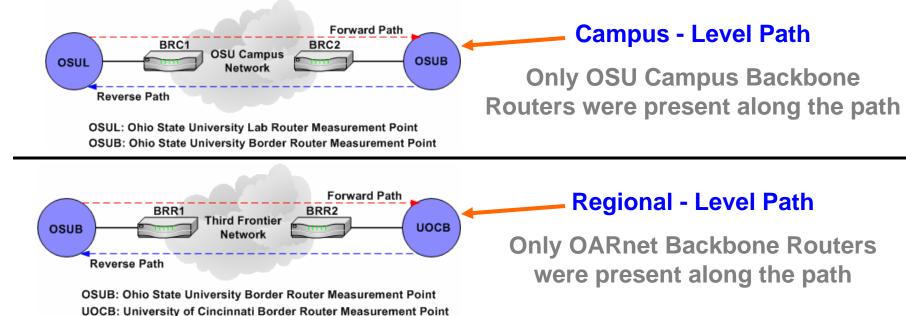
- An alpha version of the software with several of the above features has been developed and deployed on a measurement testbed
- Based on the deployment experiences, the alpha version is being enhanced to provide better and more consistent functionality
- To obtain the alpha version of ActiveMon, please contact-

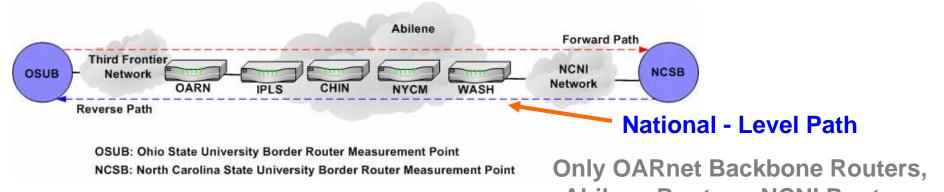
Prasad Calyam pcalyam@oar.net

Measurements Testbed

• Goal-1:To study end-to-end network performance measurement data reported by various tools to empirically correlate network events and measurement data anomalies in a routine monitoring infrastructure

"Do measurement tools actually detect significant network events?"

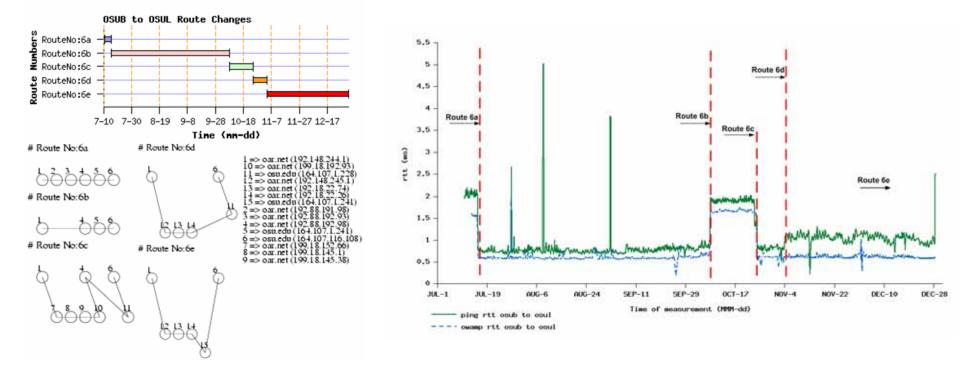

 Goal-2: To analyze long-term network performance trends via statistical analysis of active and passive measurement data collected at strategic points on an ongoing basis


"What can be understood from long-term network measurements?"

 Goal-3: To use findings obtained from fulfilling the above Goals 1 and 2, to comprehensively compare performance at campus, regional and national network backbone levels and hence to quantify end-to-end network performance stability in typical hierarchical network backbones

"How does it matter where I measure the network?"

<u>Testbed spanning Hierarchical Network Backbone</u> <u>Levels – Campus, Regional, National</u>

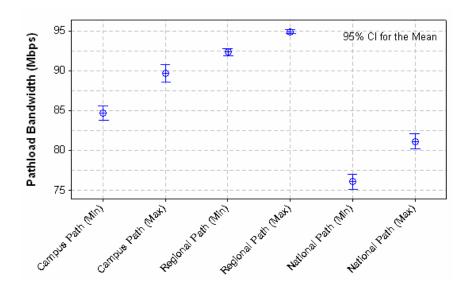


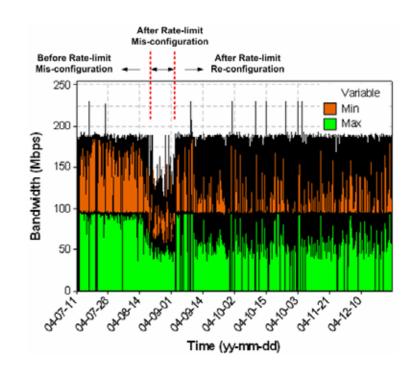
Abilene Routers, NCNI Routers were present along the path

Case Study - I

(July 2004 – December 2004 Measurements Data)

- Delay Variations
 - We found that combined one-way delays (A→B+B→A) along a path with ends A and B are comparable to round trip delays (A↔B) in all the three paths
 - Significant anomalies due to route changes (each time!)
 - Short-lived dips and peaks due to miscellaneous temporal network dynamics; Magnitudes based on hop-count




Case Study - II

(July 2004 – December 2004 Measurements Data)

Bandwidth Variations

- Router mis-configuration anomaly with three distinct trends
- Regional path was the least congested and most provisioned path
- National path traffic spanning multiple-ISPs experiences most congestion events

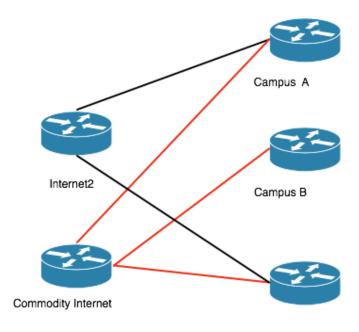
ActiveMon Related Publications

(2005)

- Prasad Calyam, Dima Krymskiy, Mukundan Sridharan, Paul Schopis, "TBI: End-to-End Network Performance Measurement Testbed for Empirical-bottleneck Detection", IEEE TRIDENTCOM, 2005.
- Prasad Calyam, Chang-Gun Lee, Phani Kumar Arava, Dima Krymskiy, David Lee, "OnTimeMeasure: A Scalable Framework for scheduling active measurements", IEEE E2EMON, 2005.
- Prasad Calyam, Dima Krymskiy, Mukundan Sridharan, Paul Schopis, "Active and Passive Measurements on Campus-level, Regional-level and National-level Network Backbone Paths", IEEE ICCCN, 2005.
- Prasad Calyam, Chang-Gun Lee, Phani Kumar Arava, Dima Krymskiy, "Enhanced EDF Scheduling Algorithms for Orchestrating Network-wide Active Measurements", IEEE RTSS, 2005.

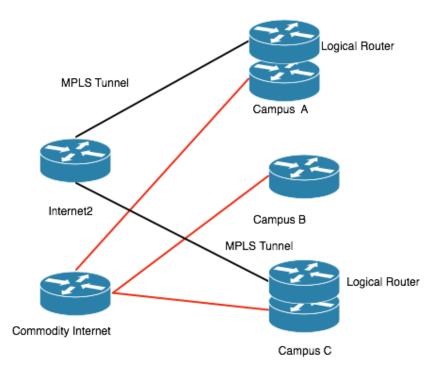
Above papers are available at - <u>http://www.osc.edu/research/networking/publications.shtml</u>

Grid Video Services

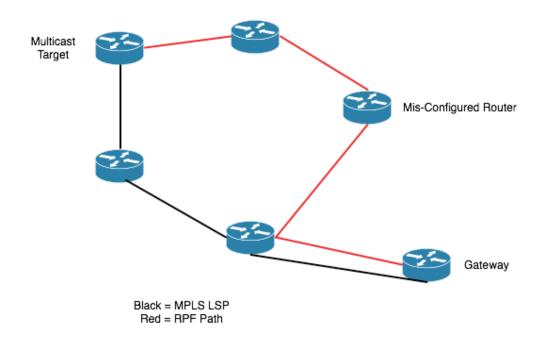


Grid Video Services

- Doesn't use MCU
- Achieves multipoint functionality via multicast
- Multicast has its own unique set of problems
- Multicast uses Reverse Path Forwarding(RPF)
- RPF path does not necessarily follow unicast route


The Fish Problem

Campus C



Logical Router Solution to The Fish Problem

Multicast Complication in MPLS Environment

Key Points to Take Home

- 1. Advanced Services require additional expertise
- 2. Control over the infrastructure doesn't necessarily mean more control; it does give one additional information, at times overwhelmingly
- 3. Solutions can be slow in coming e.g. just because one understands the problem does not necessarily mean one readily has a solution

QUESTIONS?

<u>Contact:</u> <u>Paul Schopis</u> <u>pschopis@oar.net</u>

