

Leap the Wizard Gap: Keys to Network Optimization

Loki Jörgenson Chief Scientist Apparent Networks

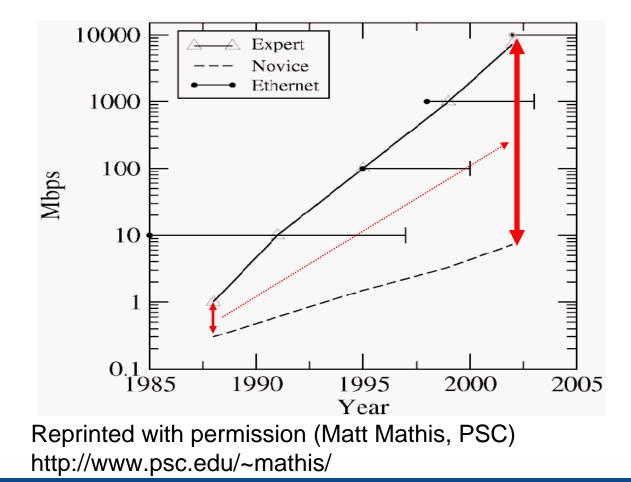
Tuesday, Sept 26 | 10:30am - 11:30am

What Will Be Covered

The "Wizard Gap":

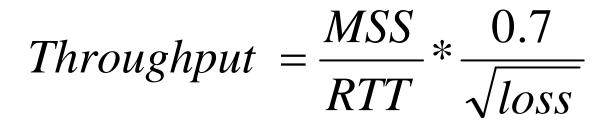
The distance between typical network performance and what you should be able to attain.

If you have heard even a few IP telephony implementation horror stories, you know by now that a typical network isn't going to cut it. Identify the most common sources of degradation, learn how to couple user QoE to network performance, and discover a better way to troubleshoot and maintain the kind of reliable network you need to handle IP.


What Will Be Covered

- What is the "Wizard Gap?"
- Identifying the sources of degradation
- **3D** definition of network performance
- Opportunities for optimization

- Defining "Wizard Gap"
 - TCP buffer tuning
 - NICs/drivers
 - Duplex conflicts
- Three dimensions of visibility
- Real-time Autognostics
- Strategies
 - Develop end-to-end, continuous monitoring of app performance infrastructure
 - Diagnostics → Autognostics
 - Device and configuration management


Wizard Gap

Working definition:

Ratio of effective network performance attained by an average user to that attainable by a network *wizard*....

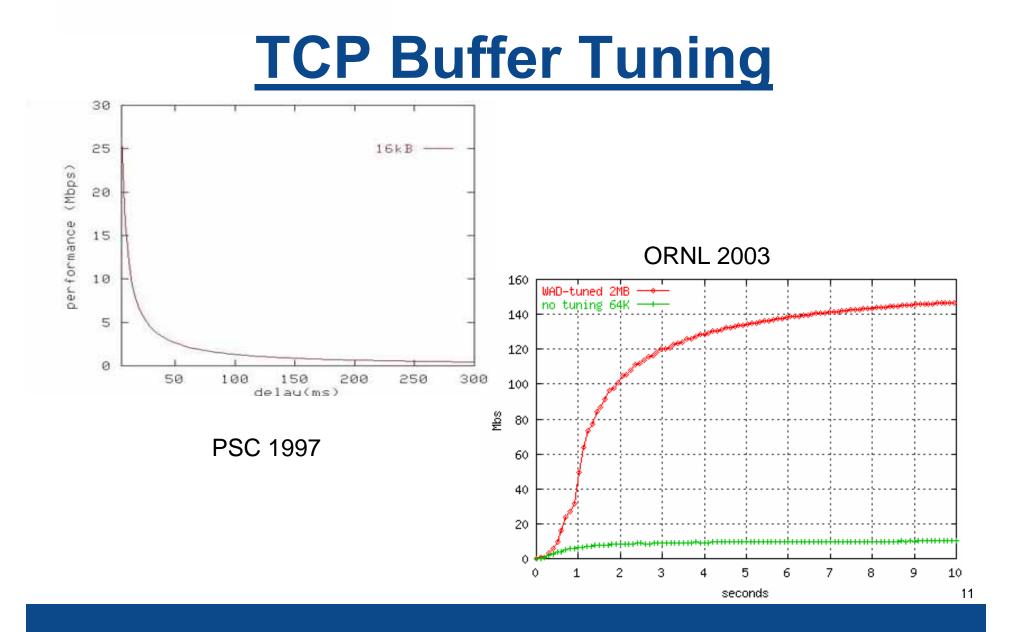
TCP Steady State Model

Simple TCP throughput model

MSS – Maximum Segment Size RTT – Round Trip Time Loss – rate of packet loss

Mathis, Semke, Mahdavi, Ott, "The Macroscopic Behavior of the TCP. Congestion Avoidance Algorithm" CCR July 1996 7

Primary performance inhibitors :


- TCP buffer tuning
- NICs/driver
- Duplex conflict

TCP Buffer Tuning

- Congestion window (cwnd) defined by
 - Slow start
 - Congestion avoidance behaviors
- Typically TCP suffers under high bandwidth and/or large latency
- BW-delay product
 - End-to-end transfer rate
 - End-to-end latency (RTT/2)

TCP Buffer Tuning

- Socket buffer sizes act as limiter
 Require ~2 x BW x delay
- Ex. 100 Mbps on 100 msec
 → ~2 Mbytes
- Typical sizes ~ 10 kbytes
 → 400 kbps!!

TCP Buffer Tuning

- Linux 2.6.17 has Tx/Rx auto-tuning and default 4 Mbyte maximum window size
 - 100 Mb/s on a 300 ms path
 - 1 Gb/s on a 30 ms
 - assuming extremely loss-less network
- MS touts 64 Kbyte window for Vista

TCP Tuning Article http://www.onlamp.com/pub/a/onlamp/2005/11/17/tcp_tuning.html

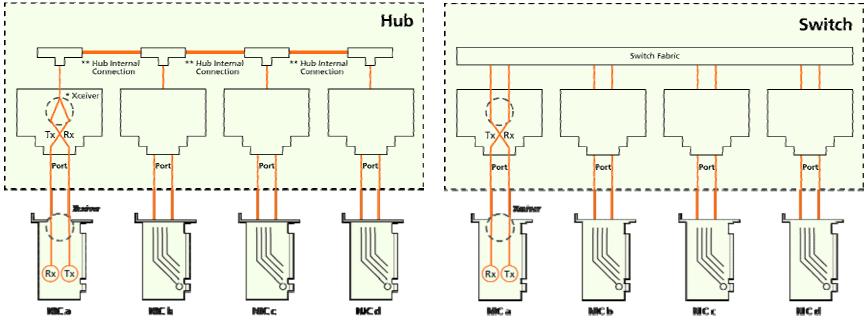
- Rated at 10/100/1000 Mbps
- Not able to put packets back-to-back at line speed
- Peak (2-way) bandwidth limited

- Inefficiencies in down-level drivers
- Undetectable without measurement
- Is it the network, OS, or NIC?

NICs/Drivers(cont.)

Standard	Standard Link Speed	Framing Overhead	Theoretical (Calculated) Bandwidth	Optimal (Realistic) Bandwidth
DS0 or ISDN	64Kbps	3.9%	0.123Mbps	(same)
ISDN dual channel	128Kbps	3.9%	0.246Mbps	(same)
T1 (HDLC+ATM)	1.544Mbps	11.6%	2.73Mbps	2.65-2.75Mbps
T1 (HDLC)	1.544Mbps	3.5%	2.98Mbps	2.80-2.98Mbps
E1	2.0Mbps	3.5%	3.86Mbps	3.72-3.90Mbps
тз	45Mbps	3.5%	86.85Mbps	85.0-86.9Mbps
10M Ethernet HDX	10Mbps	2.5%	9.75Mbps	9.6-9.8Mbps
10M Ethernet FDX	10Mbps	2.5%	19.5Mbps	19.4-19.6Mbps
100M Ethernet HDX	100Mbps	2.5%	97.5Mbps	97-98Mbps
100M Ethernet FDX	100Mbps	2.5%	195Mbps	180-195Mbps
GigE Ethernet	1Gbps	2.5%	1.95Gbps	0.4-1.8Gbps

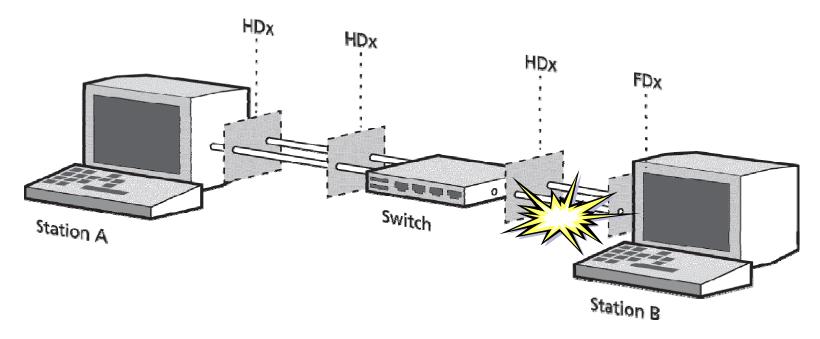
100 Mbps NICs


NIC	driver version	OS	2-way BW
3Com 10/100 FE575C	MS 5.5.0.0	Win2K	182
Intel PRO/100 VE	Intel 5.41.27.0	Win2K	182
Intel Pro/100 + MiniPCI, 10/100 NIC	Intel 6.1.3.0	Win2K	185
3Com 3905B or C 10/100 32 bit PCI	MS 5.0.2170.1	Win2K	185
Intel 82559 10/100	Intel 5.41.27.0	Win2K	181
Intel 82559 10/100	MS 4.1.67.0	Win2K	96
3Com 3CN3ACx5566 10/100	3Com 1.10.14.0	Win2K	178
3Com 3C930 10/100	3Com 4.8.0.0	Win2K	176
Linksys PCMPC200, PCMCIA	MS 5.5.0.0	Win2K	151
Xircom CBE2-100, PCMCIA, 32 bit	MS 2.58.2.2	Win2K	117
Xircom CardBus Ethernet 10/100	Xircom 3.12	Win2K	110
3Com 3CCSH572BT PCMCIA, 16 bit	MS 2.0.3.4000	Win2K	12
3Com/USR Robotics 3CCFE574BT	MS 2.0.3.4000	Win2K	12

Duplex Conflict

- Two connected Ethernet interfaces use different duplex modes
 - Half duplex (CSMA/CD) for shared media
 - Full duplex for separate Tx/Rx media
- Auto-negotiation fails or manual used
- Connection succeeds, Ping works
- Collisions during data transfers

 \rightarrow excess of 60% packet loss!!


Hub vs. Switch

* Totand Bit joined here in the Huls

** Only one transmitting station allowed at one time: internal function similar to a casaid same.

Conflict on Switch

So, what is 'auto-negotiation'???

Other Wizard Gaps

throughput → Data apps jitter → Real-time apps RTT → Transactional apps

$Loss \rightarrow all$

Sources of Degradation

- Capacity bottlenecks
- Congestion-like behaviors
- Serialization and propagation
 -
- Loss
- Reordering

Sources of Degradation

- Many sources
- End-host, mid-path, media, edge
- Layer 1, 2 and 3
- Configuration, malfunction, dysfunction, emergent

Cost of Performance

Annual Spend

- on Networks = \$1.3 Trillion
- on Network/Systems Mgmt = \$9 Billion

.... and yet

Cost of Performance

- 82% of the time, IT discovers network problems by end users complaining about application performance
- 38% of 20,000 application support tests showed serious application impacting network issues

(Apparent Networks)

 78% of network problems are "beyond our control"

24

Cost of Performance

- **50%** of network alerts are false positives
- 85% of existing networks are not ready for VOIP (Gartner 2004)
- 60% of IT problems due to human error (Networking/CompTIA 2006)
- 18:1 cost of IT staff to capital expenditures (ITWorldCanada 2006)

Performance Degradation

- Based on a survey of 20,000 customer tests with <u>application performance</u> issues, network identified 38% of cases:
 - 20% of networks have bad NIC card drivers
 - 29% of devices have packet loss, caused by:
 - 50% high utilization
 - 20% duplex conflicts
 - 11% rate limiting behaviors
 - 8% media errors
 - 8% firewall issues

Throwing Bandwidth

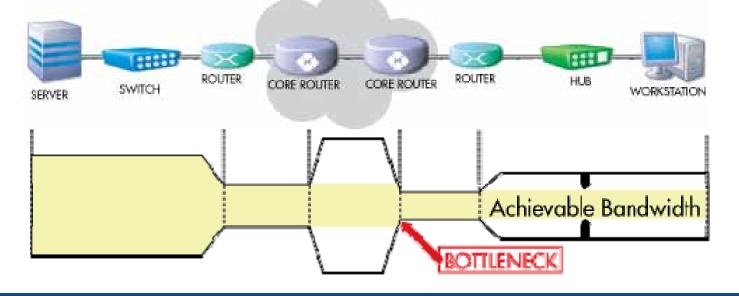
When was it a mistake to throw anything at the problem?

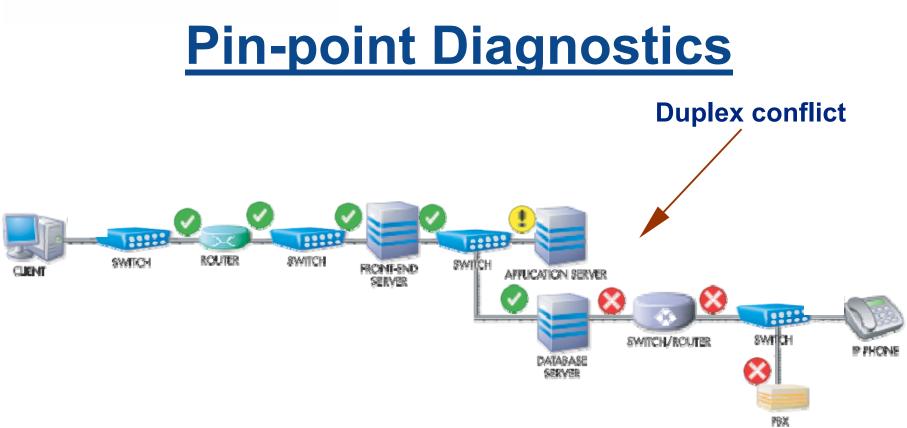
→ When you don't know what the problem is..... bandwidth can easily be the right (or wrong) answer.

Desktop GigE Denied

🥹 Gartner analyst: Use	rs wasting \$10 billion on Gigabit Ethernet - Network World - Mozilla Firefox 📃 🗖 🗙				
<u>File E</u> dit <u>V</u> iew <u>G</u> o	Bookmarks Tools Help O				
Radio News A	Apparent Networks Weather Projects References				
NETWORKWORLD					
HOME	LANs & Routers				
	Routers Ethernet Wireless LANs White Papers				
RESEARCH CENTERS					
Network Security	NetworkWorld.com > LANs / Routers >				
LANs & Routers	Cartner analyst: Resist Cig Ethernet				
VoIP & Convergence	Gartner analyst: Resist Gig Ethernet				
Network Management Wireless & Mobile	By <u>Phil Hochmuth</u> and <u>Jim Duffy</u> , Network World, 05/22/06				
Operating Systems					
Servers & Data Center					
Network Applications	Is Gigabit Ethernet a waste of your money?				
Network Storage					
Wide Area Network	An analyst last week told enterprise 🛛 🖓 Related links				
Small Business	IT and network professionals they				
Networking	will toss away more than \$10 billion Q&A: Stop wasting your money on Gigabit Ethernet				
	on Gigabit Ethernet LAN gear over Network World, 05/22/06				
EVENTS	the next two years that would be				
BUYER'S GUIDES	better spent on technologies				
	designed to support increasingly 02/13/06				
CAREERS	distributed workforces. Gartner to CIOs: Think business				

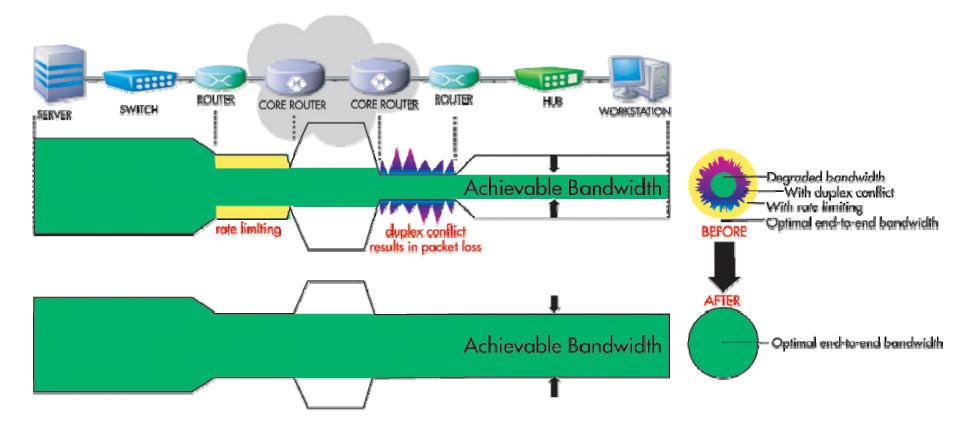
Bandwidth vs. QoS



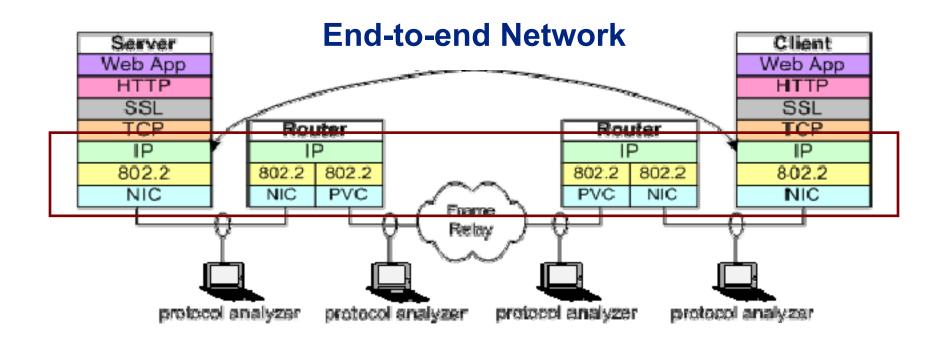

- Defining "Wizard Gap"
 - TCP buffer tuning
 - NICs/drivers
 - Duplex conflicts
- Three dimensions of visibility
- Real-time Autognostics
- Strategies
 - Develop end-to-end, continuous monitoring of app performance infrastructure
 - Diagnostics → Autognostics
 - Device and configuration management

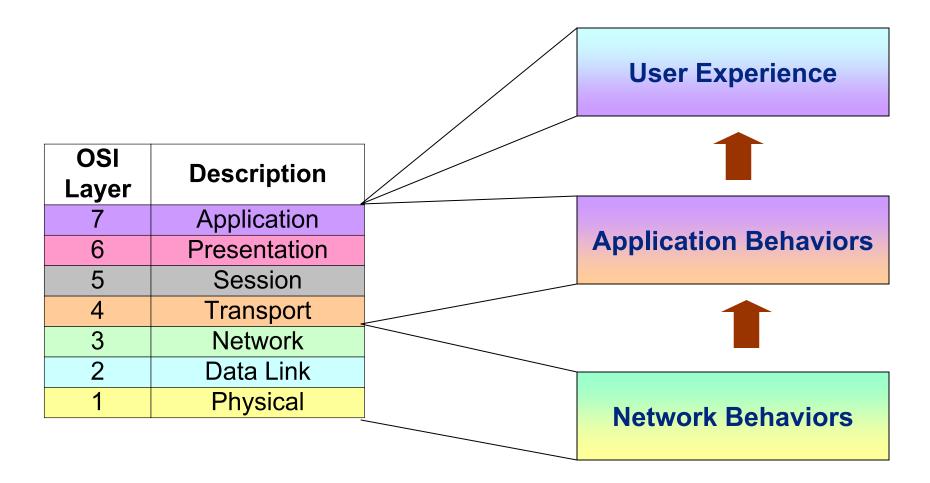
End-to-end Visibility

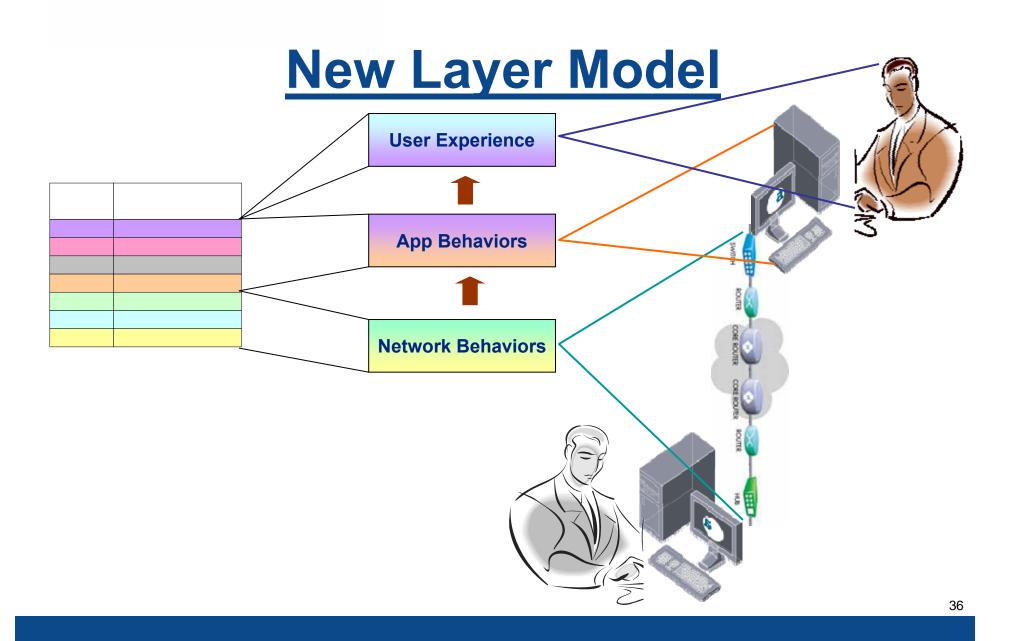
Network path characterization

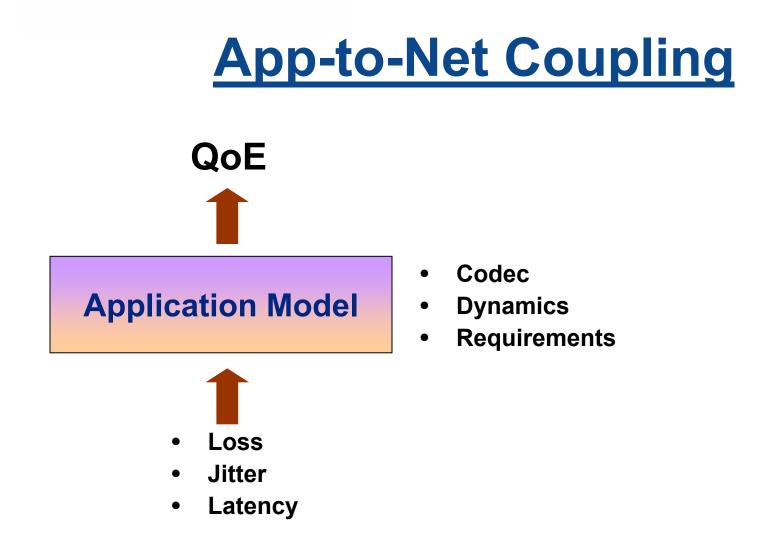

- How big?
- How long?
- How much traffic

- Where in the path is the degradation?
- What is causing it?
- What is needed to remediate it?


Iterating to Performance


Network Visibility


- Need to be able to "see" performance
- End-to-end
- Application-specific
- Dynamically
- Under field conditions

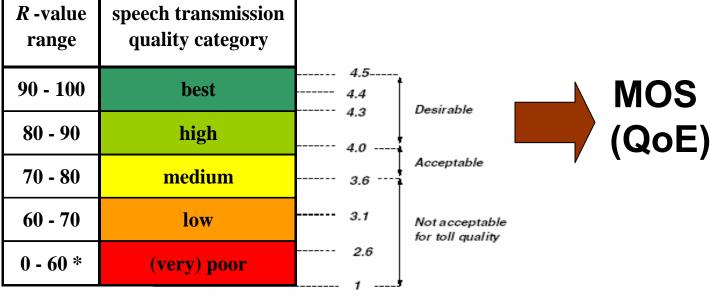

End-to-End Layers

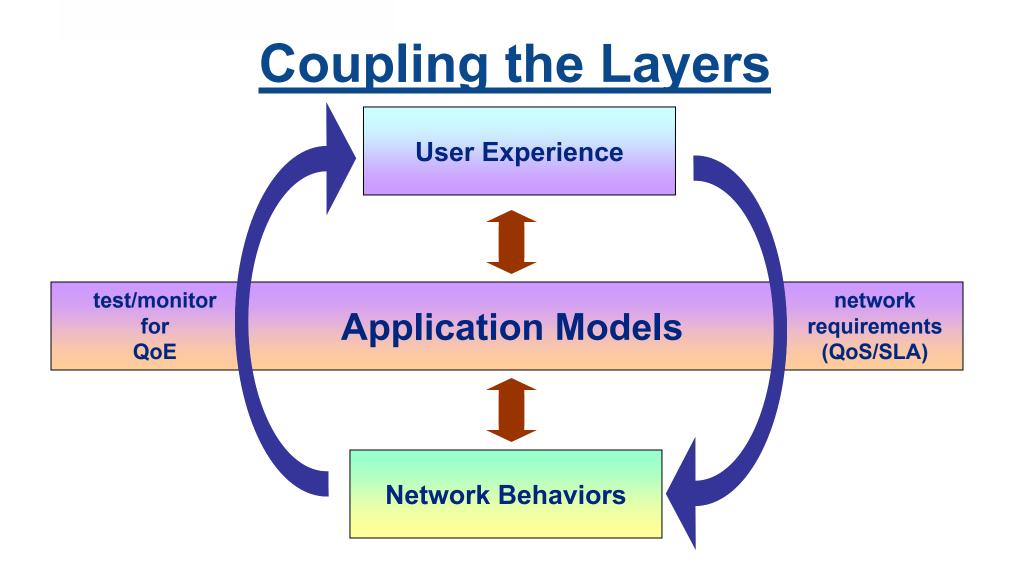
New Layer Model

Application Ecology

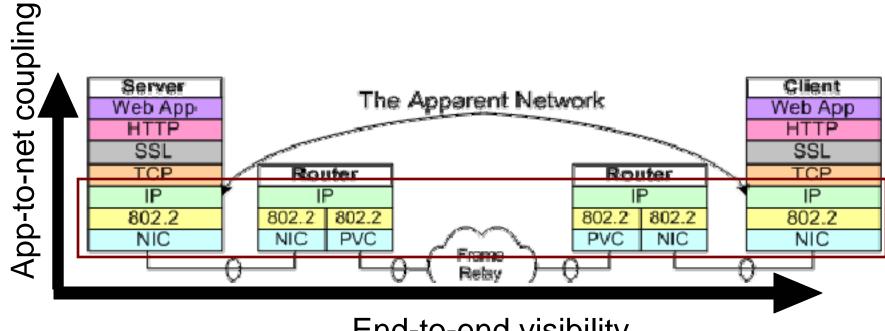
• Paraphrasing ITU categories

- Real-time
 - Jitter sensitive
- Synchronous/transactional
 - Response time (RTT) sensitive
- Data
 - Bandwidth sensitive
- Best-effort
 - Not sensitive


E-Model Mapping: R \rightarrow MOS


E-model generated "R-value" (0-100)

- maps to well-known MOS score

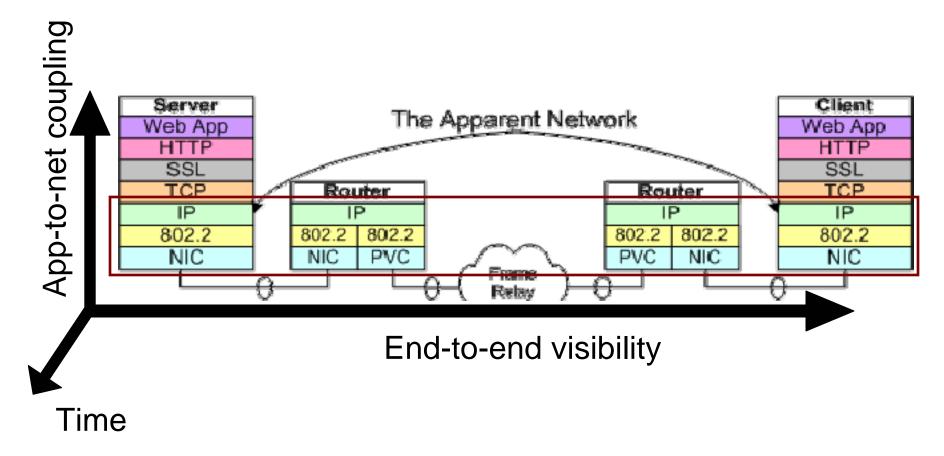


Network visibility

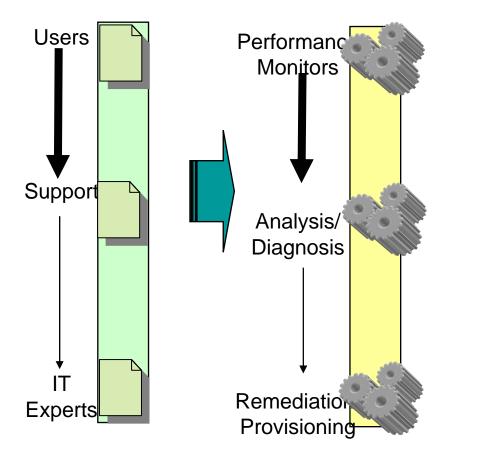
End-to-end visibility

- Defining "Wizard Gap"
 - TCP buffer tuning
 - NICs/drivers
 - Duplex conflicts
- Three dimensions of visibility
- Real-time Autognostics
- Strategies
 - Develop end-to-end, continuous monitoring of app performance infrastructure
 - Diagnostics → Autognostics
 - Device and configuration management

Autonomic Computing


- IBM, HP, Microsoft, Juniper, Cisco
- 18:1 cost ratio for IT staff to capital
- IT skills pool diminishing

Autonomic Networks


What will it take?

- Solutions must be scalable
- Humans removed from critical steps
- Must be robust and reliable
- Must be real-time
- Non-intrusive and pervasive
- Adaptive and application specific
- Continuously aware

Network visibility in 3D!!

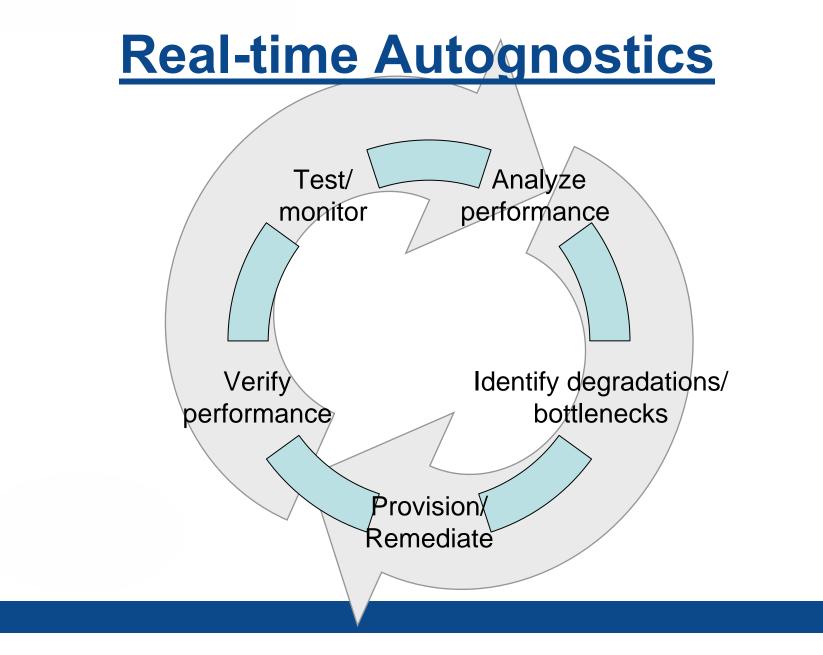
Making the Case for Automation

<u>Users</u> acting as "performance monitors"

who are calling

Support staff acting as "expert systems"

who are alerting


<u>IT experts</u> acting as "control systems"

who are remediating/ provisioning

Autognostic Performance Cycle

Necessary steps:

- Test and/or monitor network paths for application performance
- Analyze performance to identify presence of degradation (in terms of application)
- Identify, localize, and resolve sources of degradation
 - Direct systems to remediate/provision
 - Verify by testing and continue monitoring

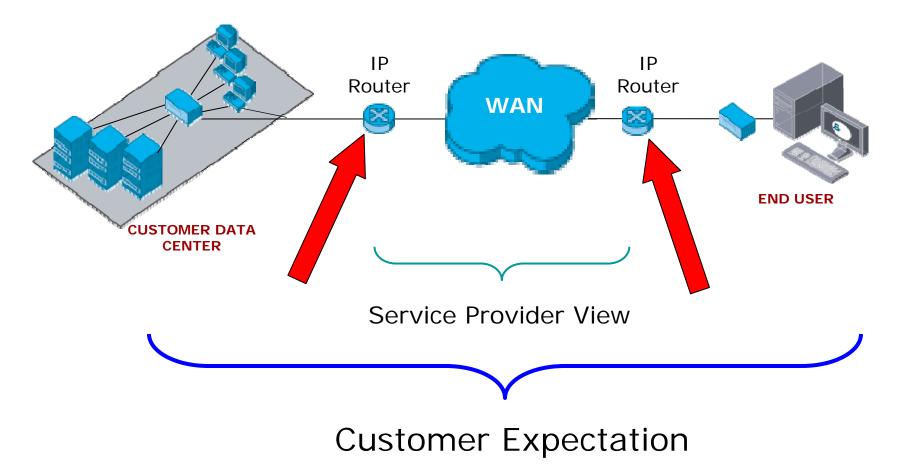
- Defining "Wizard Gap"
 - TCP buffer tuning
 - NICs/drivers
 - Duplex conflicts
- Three dimensions of visibility
- Real-time Autognostics
- Strategies
 - Develop end-to-end, continuous monitoring of app performance infrastructure
 - Diagnostics → Autognostics
 - Device and configuration management

Leaping the Wizard Gap

- Continuous monitoring of application performance
- Diagnostics → Autognostics
- Remediation/provisioning

Continuous Monitoring

- Challenges
 - Instrumenting the network
 - Monitoring for application performance
 - Networks you don't own
 - Dynamic monitoring and scalability
 - Intelligent detection and alerts


Diagnostics/Autognostics

- Challenges
 - Broad range of degradations
 - Found at different layers
 - Specific to application types
 - Not all related to device configuration
 - Need to be specific and targeted
 - Re-occurring (entropy and sticky fingers)

Remediation/Provisioning

- Challenges
 - Not possible to automate
- Device/configuration management
- Standardized interfaces
 - Netconf v1.0
 - SNMP v3.x
- Verification and validation
- Dynamic and configurable SLAs

The Ownership Dilemma

.... one step short of a leap

Key Points to Take Home

- Wizard gap is large and growing
- Different gaps for different apps
- Seeing is essential to optimizing
- Application modeling critical to performance monitoring
- Requirements for automation
- Missing remediation/provisioning

QUESTIONS?

Contact: Loki Jörgenson ljorgenson@apparentNetworks.com (604) 433-2333

www.apparentNetworks.com

