

Wireless VoIP in the Enterprise

Michael F. Finneran President dBrn Associates, Inc.

Session Introduction

- The general interest in IP Voice and Wireless LAN makes their combination almost inevitable
- Health care, retail, and higher education have been the primary vertical markets for WLAN voice:
 - Mobile workforce
 - High volume of voice communications
- Wireless PBX products (e.g. SpectraLink Link WTS) have been available for a decade or more, but they were expensive as the entire wireless infrastructure had to be built before the first phone could be activated
- With a wireless LAN in place, we merely buy handsets and possibly a controller
- However, users have high expectations for voice systems in the areas of performance, reliability, and security.

Current Environment

- The 802.11/Wi-Fi wireless LAN technology was not designed for voice!
- Voice devices represent less than 1% of WLAN stations today
- The QoS standard is complete, but the standard for hand-offs is still in development
- WLAN voice security is catching up (WPA2)
- Conclusion:
 - The basic capabilities are defined in the standards, but the enhanced capabilities required for large-scale deployments still required vendor-proprietary extensions

Session Outline

Section 1: WLAN Basics

Section 2: Voice Over WLAN Configuration

Section 3: Quality of Service Options

Section 4: Hand-offs, Security, and Other Issues

Section 5: Conclusion: Planning Recommendations

Section 1: WLAN Basics

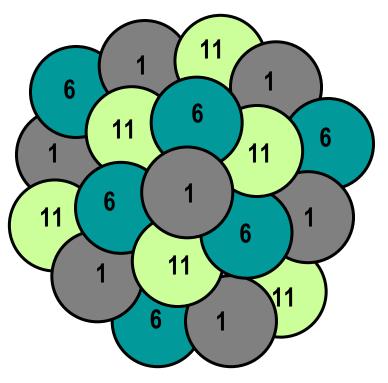
Wireless LAN Basics

Basic Characteristics of 802.11 Wireless LANs

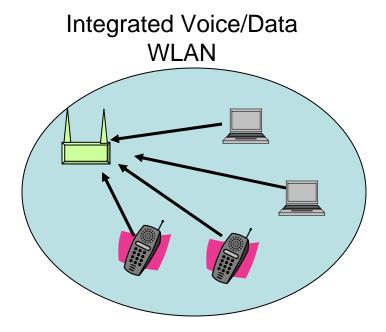
- Half Duplex: Only one device can send at a time
- Shared Media: One channel shared by multiple users
- Range: Up to 300 feet indoors- Farther outdoors
- Capacity/Range: Actual data rate depends on:
 - Distance from the access point
 - Obstructions in the radio path
 - Interference from other transmitters in the same radio band
- Protocol Overhead: Reduces network throughput by 50%

-Voice Impact: Increased latency and causes more dropped packets

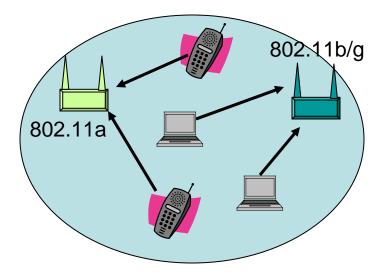
IEEE 802.11 Radio Links


Interface	Max. Bit Rate	Independent Channels	Frequency Band	Radio Technique
802.11b	11 Mbps	3	2.4 GHz	DSSS
802.11a	54 Mbps	23	5 GHz	OFDM
802.11g	54 Mbps	3	2.4 GHz	OFDM
802.11n	289 Mbps (20 MHz) 600 Mbps (40 MHz)	26 (20 MHz)	2.4 or 5 GHz	OFDM/MIMO

Each wireless LAN requires a radio channel (Selected in the AP)

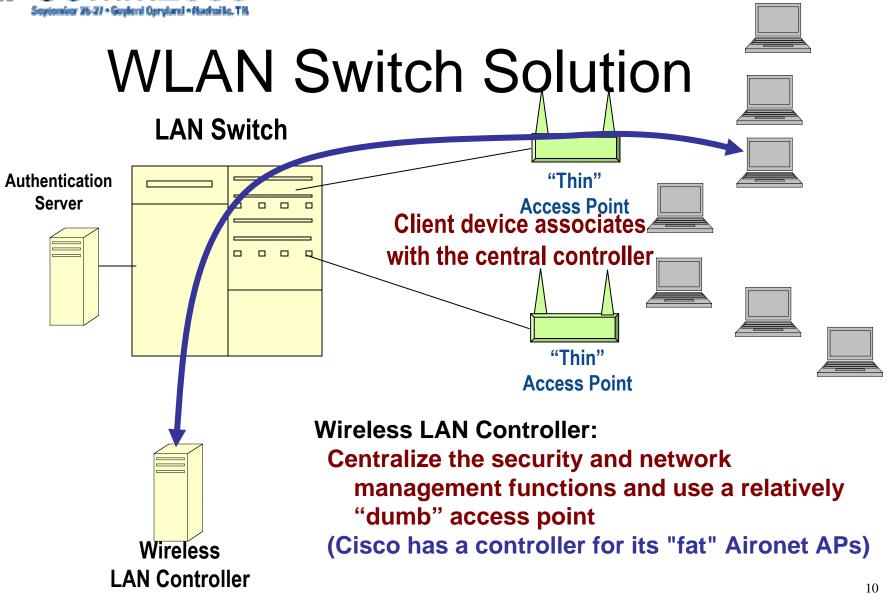

- Home/small office networks require only one channel
- Large-scale networks are configured with overlapping cells
 - There are 3 non-interfering channels in the 2.4 GHz band, and 23 in the 5 GHz band
 - Channels cannot be reused in adjacent cells
 - Some coverage overlap is recommended
 - Excessive overlap causes "association thrashing"

Layout of a 3-Channel 2.4GHz Network



Potential Configurations

QoS Required to Prioritize Voice


Dual Overlay Network

- 802.11a has more channels (23)

- 802.11b provides longer battery life

WLAN Switch Capabilities

- Integrated Design Tools
 - Assist in site planning and initial AP placement
- RF Management/Power Adjustment
 - Automatically selects channels and adjusts power levels on installation and when new cells are added to the network
- Centralized Authentication and Encryption
 - Users associate with the switch rather than the access point
- Hand-off Capability
 - User connections can be handed-off from one access point to another usually in <50 msec
- Rogue/Spoofed Access Point Detection
 - The WLAN switch will recognize any transmissions that are not from its access points
 - Some will launch attacks to disable them
- Rogue/Spoofed Access Point Location
 - Some products provide tools to assist in locating rogues

Major WLAN Switch Suppliers

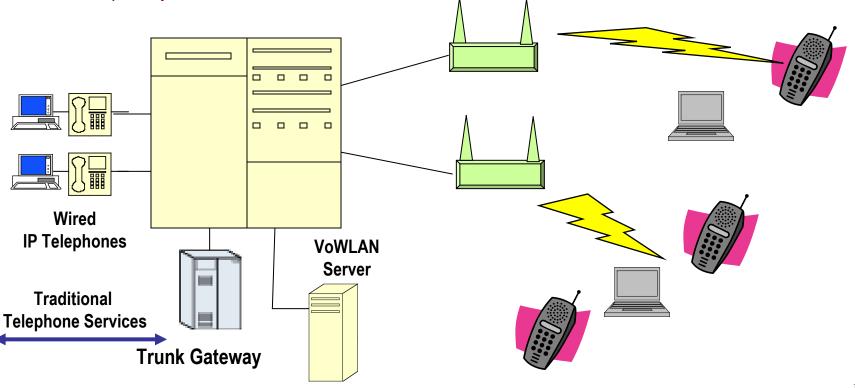
- -Aruba (Alcatel, Juniper)
- -Cisco Systems
- -Meru Networks (Avaya)
- -Siemens (formerly Chantry Networks)
- -Symbol Technologies
- -Trapeze Networks (Nortel, Enterasys)
- -Xirrus (ADC)

Section Conclusion

- The first step in supporting voice on a WLAN is to have a functional WLAN infrastructure
- Some critical issues to bear in mind:
 - If voice and data devices share the same channel, QoS will be needed to prioritize voice (or you can build a separate WLAN for voice)
 - Data service may be restricted to conference rooms, but voice service must be available throughout the facility
 - The received signal strength of a voice device will be diminished as it is held close to the body
 - Wi-Fi is a "power hog" so battery life will be an important consideration in network design
 - Voice users have high expectations regarding quality and reliability

Section 2: Voice over WLAN Configuration

Elements in the VoWLAN Network


- WLAN Voice Handsets
 - Small number of models currently available
 - Two primary categories: General office and "ruggedized"
 - Ruggedized models typically support push-to-talk (PTT)
 - Laptops or PDAs with softphone client software are an option
- Voice Signaling
 - Proprietary: Cisco SCCP ("Skinny"), SpectraLink, Vocera
 - SIP-based: Works with any SIP-compliant server
- WLAN Infrastructure
 - Normally shared with data, so QoS is essential to insure voice quality in high traffic periods
 - Separate voice WLAN becoming more practical (Dual radio APs)
- Interface to Wired PBX System
 - Exchange calls and support feature transparency
 - Feature transparency varies by product

VoWLAN Configuration

- VoWLAN Handsets: Cisco, SpectraLink, Siemens, RIM, Vocera, etc.
- Server/Gateway: Manages connections for VoWLAN Handsets
- Wireless LAN: WLAN Switch-based solutions are preferred as they typically include handoff capability

802.11 Equipped Handsets

Voice over WLAN Handsets

- Cisco:
 - 7920
- RIM Blackberry
 - Blackberry 7270
- Spectralink:
 - NetLink e340- General Office Use
 - NetLink h340- Healthcare
 - NetLink i640- Ruggedized
- Siemens
 - optiPoint WL1
 - optiPoint WL2
- Vocera
 - Communications Badge
- WLAN/Cellular
- Prices start at around \$350

SpectraLink H340

Siemens optiPoint WL2

Vocera Communications Badge

VoWLAN Handset Comparison

	Cisco 7920	Blackberry 7270	SpectraLink e340	Siemens optiPoint WL2	Vocera Comms Badge
WLAN	802.11b	802.11b	802.11b	802.11b/g	802.11b
Voice Coding	G.711 G.729a	G.711	G.711 G.729a	G.711 G.729a/723	G.711 Prop. 8K
Encryption	WEP/WPA & 2	WEP	WEP/WPA & 2	WEP/WPA	WEP/WPA
Authen- tication	802.1x LEAP	802.1x LEAP	802.1x LEAP	802.1x LEAP, EAP-TLS	802.1x LEAP
WMM QoS	Yes	No	Yes	Yes	No

WLAN/Cellular Handsets

• The Wi-Fi Alliance lists 26 Certified Models (July 2006)

- D-Link: 1 model
- Motorola: 2 models
- Nokia: 10 models
- Phillips: 1 model
- Samsung: 10 models
- Sanyo: 1 model
- Sony: 1 model
- All use SIP-based signaling
- Most are not available in the US!

Other Handset Issues

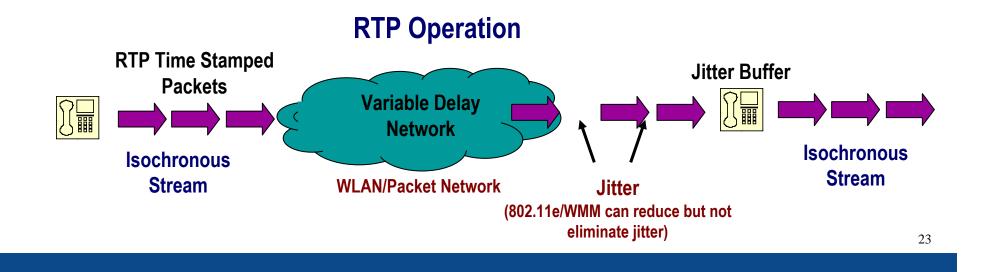
- Battery Life: Major convenience issue
- Form Factor:
 - Utilitarian Look
 - Small number of models
- Radio Link: Most are 802.11b only
 - 802.11a and g radios use more power!
- Security: Can be a problem in mixed voice/data networks ("least common denominator" security)

Section 3: Quality of Service Options

Voice on Wireless LANs

Shared Media LANs are not recommended for voice

Channel sharing inevitably introduces variable delay into the path-"Non-isochronous" service


Major Issues:

- 1. Capacity/Quality of Service
 - Impacts Latency
 - Increases likelihood of dropped packets
- 2. Call Access Control/Load Balancing
- 3. Hand-off Capability
- 4. Security

Capacity and Quality of Service

- Capacity and QoS
 - WLANs are low-capacity, contention-based, shared media networks
 - Protocol includes no provision for maintaining consistent timing
- Real Time Protocol (RTP)
 - RTP time stamps voice packets before sending
 - Receiver buffers packets and delivers them based on time stamps
- Voice Activity Detection/Silence Suppression typically not used

WLANs Impact on Latency

- Network Latency has been the major complaint with packet voice systems
- Requirement: One-way latency <150 msec

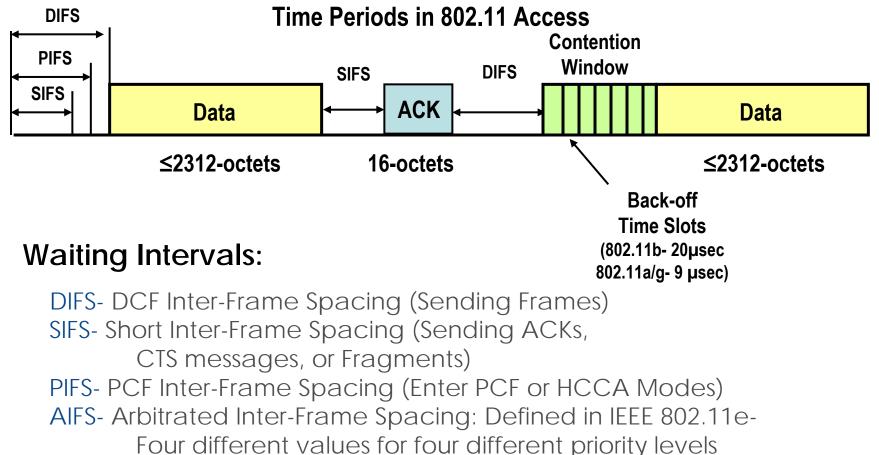
	Alcatel OMNI PCX	Avaya S8700/G650	Cisco IP Com Sys	ShoreTel ShoreTel5	Siemens HiPath 4000
Hardwired IP					
G.711 (64 K)	57 msec	67 msec	54 msec	47 msec	54 msec
G.729 (8 K)	42 msec	76 msec	71 msec	55 msec	81 msec
WLAN					
G.711 (64 K)	81 msec	92 msec	90 msec	N/A	N/A
G.729 (8 K)	87 msec	89 msec	92 msec	N/A	N/A

Source: Miercom, <u>Business Communications Review</u>, January 2005

MAC Protocol- CSMA/CA

Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) Contention-based access results in variable transit delay

- Four primary MAC options:
 - 1. Distributed Control Function (Most typical)
 - 2. RTS/CTS Mode: For "Hidden Nodes" and Mixed b/g networks
 - 3. Point Control Function: For time sensitive traffic (Never used)
 - 4. Hybrid Coordination Function: WMM/IEEE 802.11e for QoS
- Different from Ethernet- Can't "hear" while sending: Must <u>Avoid</u> rather than <u>Detect</u> collisions
 - Pre-transmission delay timers (SIFS, PIFS, and DIFS) provide priority access to the shared radio channel
 - All correct receptions are acknowledged


Distributed Control Function

Overall Concept: Stations collaborate to avoid collisions

- Some Definitions:
 - Inter-Frame Spacing: Intervals a station will wait before sending (when the radio channel is idle)
 - DIFS: Waiting interval to send a frame
 - SIFS: Waiting interval to send an ACK
 - PIFS: Waiting interval to seize the channel for PCF
 - AIFS: In 802.11e, 4-values for different priority levels
 - Back-off Counter: Used when the channel is busy or when a collision occurs. Stations back-off an integral number of Time Slots (e.g. 20 µsec or 9 µsec) before attempting to access the channel

CSMA/CA Operation

IEEE 802.11e for QoS

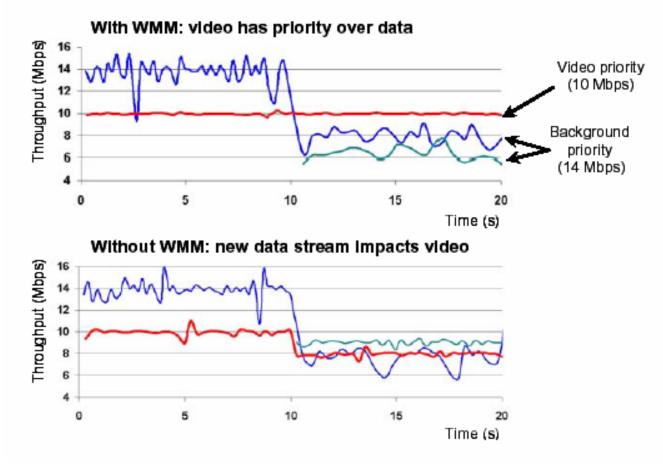
The IEEE developed a new protocol option designated 802.11e that will provide Quality of Service (QoS) capability

Hybrid Coordination Function (HCF) defines two options:

- 1. Enhanced Distributed Control Access (EDCA):
 - Contention-based protocol with priority access
 - Provides priority channel access, <u>not</u> consistent delay
- 2. Hybrid Controlled Channel Access (HCCA):
 - Contention-free, polled access with consistent delay
 - The AP takes control of the network periodically and polls selected stations
 - Includes a signaling protocol where stations provide requirements for bandwidth, latency, and jitter
 - Wi-Fi Alliance suspended certification due to "lack of interest"

802.11e/Wi-Fi Multimedia (WMM)

- Only EDCA is being implemented at this time
 - Four Access Categories are Defined
 - Voice
 - Video
 - Data (Same as current DCF traffic)
 - Background Data
 - Different waiting intervals (AIFS) and back-off counters for each
- Wi-Fi Alliance calls EDCA compatibility: "Wi-Fi Multi Media (WMM) Certified"


T

802.11e Default Parameters

	DSSS PHY (802.11b) Access Category				ODFM PHY (802.11a/g) Access Category			
Parameter								
	4	3	2	1	4	3	2	1
AIFS								
(SIFS + <i>x</i>	7	3	2	2	7	3	2	2
Time Slots)								
AIFS Time	150	70	50	50	73	37	28	28
(µsecs)								
Tx Op Limit	0	0	6016	3264	0	0	3008	1504
(µsecs)								
CW min	31	31	15	7	15	15	7	3
CW max	1023	1023	31	15	1023	1023	15	7

WMM Impact on Performance

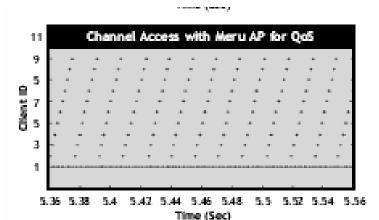
Source: Wi-Fi Alliance

Theoretical Maximum Calls

	Theoretical Maximum Calls Per WLAN (20 msec Voice Sampling)									
		802.11b	Network		802.11a or g Network					
Codec	11 Mbps	5.5 Mbps	2 Mbps	1 Mbps	54 Mbps	36 Mbps	18 Mbps	6 Mbps		
G.711	23	16	8	4	78	69	51	24		
G.729A	30	24	14	8	92	86	73	45		
G.723.1	44	36	21	13	138	129	110	66		
Skype iLBC	28	22	13	7	89	83	69	40		
Source: w	•	.com, Matt Voice Ca		the Head	of an Acce	ess Point",	12/13/200)5		

Expected Capacity for Voice

- General Capacity Expectations:
 - 11 Mbps Network (802.11b or shared b/g Network)
 - 6 to 8 Simultaneous calls per AP
 - 54 Mbps Network (802.11a or "Pure-g" Network- if supported)
 - 20 Simultaneous calls per AP
 - Shared 802.11b/g Network
 - 10 Simultaneous calls per AP
- QoS Impact
 - Will not increase the number of calls supported, but will insure the quality of the calls (lower latency, fewer dropped packets)


Vendor Proprietary Techniques

- SpectraLink Voice Priority (SVP)
 - Most Popular technique used today
 - Operates only through approved access points
 - Basic Capabilities
 - Prioritize Outbound Voice Packets
 - Requires compliant access point
 - Stream Voice Packets
 - Send sequential packets after SIFS interval
 - Prioritize Voice Retransmissions
 - In the event of a collision, voice back-off set to zero

Vendor Proprietary Techniques

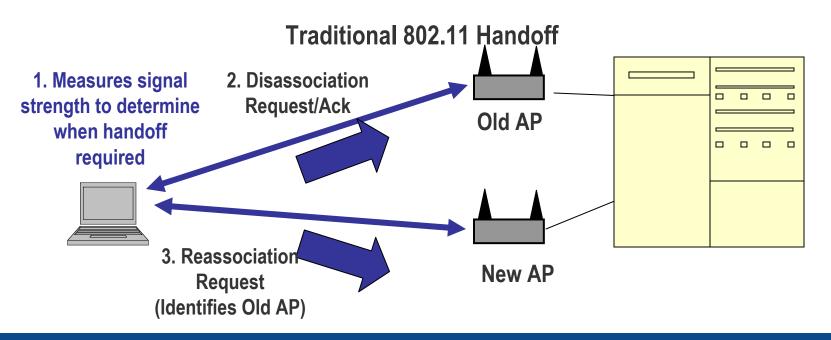
- Meru Networks- Air Traffic Control[™]
 - Full overlay (rather than cellular) RF layout
 - Proprietary over-the-air scheduling algorithm
 - By reducing collisions, they can support 30 simultaneous 8 Kbps voice conversations on an 802.11b network

Meru ATC technology overcomes latency and jitter issues by using near-deterministic channel access to deliver over-the-air QoS. Traffic types are automatically detected to apply QoS policies for a dynamic mix of voice and data with support for up to five times more voice calls per AP.

Source: Meru Networks

Emerging Issues for Voice

- Features identified in the standards, but implemented with vendor proprietary solutions
 - Call Access Control (802.11e)
 - Ability to limit the number of voice calls the AP will accept is critical
 - Load Balancing (802.11u)
 - Ability to reroute calls to less congested access points
 - Neighbor Reporting (802.11k)
 - Ability to have the AP query client stations regarding signal strength from alternate APs to guide handoff decisions



Section 4: Handoffs, Security and Other Issues

Security and Hand-offs

- Problem:
 - The basic 802.11 hand-off process could take over a second, or several seconds if the station had to reauthenticate for security!
 - Handoff is far more common in voice than data applications, and it must be done quickly (<50 msec) while security is maintained

Hand-off Options

Voice devices will be far more mobile than data devices, so the ability to hand-off calls between APs will be critical

- <u>IEEE 802.11r</u>
 - Developing standard for fast, secure WLAN handoffs
 - Standard not expected before late-2007!!
- <u>IEEE 802.21</u>:
 - Standard for Local and Metropolitan Area Networks: Media Independent Handover Services defining hand-offs among all 802-series technologies (LANs, Bluetooth, WiMax, etc.)
- Vendor Proprietary Options- WLAN Switch
 - Most WLAN switches can provide fast (<50 msec), secure handoffs
 - Actual time may increase if the handoff must cross IP subnets

WLAN Security: Three Generations

1. Pre-Security

- Wired Equivalent Privacy (WEP)
- Not recommended for enterprise installations
- 2. Wi-Fi Protected Access (WPA)
 - Temporal Key Integrity Protocol (TKIP)
 - 802.1x Authentication: Enterprise WPA
 - Available on most WLAN voice devices
- 3. 802.11i-Based Security/WPA2
 - Advanced Encryption Standard (AES) encryption
 - State-of-the-art and recommended
 - Availability increased significantly during 2006

Feature Transparency/ Presence

- All WLAN voice devices will be able to make and receive calls
- Greater feature availability requires a more functional interface between the VoWLAN controller and the wired PBX system
- Wide range of feature capabilities with different VoWLAN and PBX combinations
- One particular area of interest is the ability to link a WLAN location tracking capability to presence management applications in the PBX

Section 5: Conclusion

Key Points to Take Home

- WLAN voice is still in its infancy
- Acceptable voice quality will require a sound network design that insures both coverage and sufficient network capacity
- Available QoS techniques should be used to insure priority handling for voice packets in mixed voice/data networks
 ... but QoS does not create capacity, it merely manages scarcity!
- Emerging capabilities will be key in large-scale networks:
 - Call Access Control/Load Balancing
 - Neighbor Reporting
 - Network Monitoring, Capacity Planning

Key Points to Take Home

- We should see a new line of VoWLAN handsets in 2006/07.
- Key features to look for:
 - Support for 802.11 a and g radio links
 - Security based on WPA2/802.11i as well as WPA
 - Support for WMM/802.11e QoS (EDCA option at least)
 - WMM Power Save: For improved battery life
 - Monitoring and Maintenance: Troubleshooting wireless networks is inherently difficult due to the vagaries of radio transmission.

Web-based Resources

- www.wi-fi.org
- www.standards.ieee.org/wireless
- www.Palowireless.com
- www.wi-fiplanet.com
- www.networkworld.com/topics/wireless.html
- www.SearchMobileComputing.com
- www.networkcomputing.com/channels/wireless.jhtml
- www.Fiercewireless.com
- www.wirelessdesignmag.com

QUESTIONS?

Contact: Michael F. Finneran <u>mfinneran@att.net</u> 516-569-4557

