

MPLS based Virtual Private Network Services

Half Day Tutorial

http://www.mplsforum.org

http://www.frforum.com

MPLS VPN Tutorial Agenda

Introduction to MPLS and MPLS VPNs

Defining Layer 2 and 3 VPNs

Layer 3 MPLS VPN

- BGP Review
- RFC 2547bis Key Characteristics
- BGP/MPLS VPN Architecture Overview
 - ✓ VPN Routing and Forwarding (VRF) Tables
 - ✓ Overlapping VPNs
 - ✓ VPN Route Distribution
 - ✓ VPN Packet Forwarding
 - ✓ Scaling L3VPNs and Route Reflectors

MPLS VPN Tutorial Agenda

Layer 2 VPNs

- IETF PWE3 and L2VPN WG update
- Encapsulation and Label Stacking
- Virtual Private Wire Services VPWS
 - Pt-to-pt Ethernet, Pt-to-pt ATM, Pt-to-pt Frame Relay
- Virtual Private LAN Services VPLS

Introduction to Multi-Service Interworking

- Carrier Challenges at the Edge
- Interworking History and Definition
- Network and Service Interworking (FRF.5 and FRF.8.1)
- MPLS FR Alliance Multi-Service Interworking Work Actions

Carrier Migration Examples

VPN Tutorial Contributors

- Thomas Bopp Marconi Communications
- Paul Izzo Consultant
- Sunil Kandakar Alcatel
- Gary Leonard Riverstone Networks

Why MPLS ? A Common Control Plane

MPLS: Addresses many network needs

MPLS FR Alliance and the IETF

MPLS Frame Relay Alliance – Mission

- The MPLS Frame Relay Alliance is an international industry wide organization driving worldwide deployment of multi-vendor multiservice label switching networks and associated applications.
- Go to <u>http://www.mplsforum.org</u>

IETF – Mission

- The Internet Engineering Task Force (IETF) is a large open international community of network designers, operators, vendors, and researchers concerned with the evolution of the Internet architecture and the smooth operation of the Internet.
 - Go to http://www.ietf.org

Slide 7 of 119

Virtual Private Networks

- Provide private line and private LAN connections between multiple sites
- Leverage public network to provide competitive service pricing and reduce service operating cost

Virtual Private Networks

- VPN (Virtual Private Network) is simply a way of using a public network for private communications, among a set of users and/or sites
- Remote Access: Most common form of VPN is dial-up remote access to corporate database - for example, road warriors connecting from laptops
- Site-to-Site: Connecting two local networks (may be with authentication and encryption) - for example, a Service Provider connecting two sites of the same company over its shared network

MPLS, VPNs, and Standards A lot of confusion

Slide 10 of 119

Copyright © 2003 The MPLS & Frame Relay Alliance

VPNs *Types, Layers, and Implementations*

VPN Type	Layer	Implementation	
Leased Line	1	TDM/SDH/SONET	
Frame Relay	2	DLCI	
ATM	2	VC	
GRE/UTI/L2TPv3	3	IP Tunnel	
Ethernet	2	VLAN / VPWS / VPLS	
IP	3	RFC2547bis / VR	
IP	3	IPSec	

Slide 11 of 119

VPNs *How do they compare?*

	FR or ATM	IPSec	L3 MPLS	L2 MPLS
Point-to-multipoint	×	×	\checkmark	\checkmark
Multi-protocol	\checkmark	×	×	\checkmark
QoS and CoS	\checkmark	×	\checkmark	\checkmark
Low latency	\checkmark	×	\checkmark	\checkmark
Security	\checkmark	\checkmark	\checkmark	\checkmark
SLAs	\checkmark	×	\checkmark	\checkmark

MPLS VPNs in the IETF

MPLS VPNs in the IETF

Slide 14 of 119

Copyright © 2003 The MPLS & Frame Relay Alliance

What are Layer 2, Layer 3 VPNs

- VPNs based on a Layer 2 (Data Link Layer) technology and managed at that layer are defined as Layer 2 VPNs (MPLS, ATM, Frame Relay)
- VPNs based on tunneling at Layer 3 (Network Layer) are Layer 3 VPNs, (BGP/MPLS, VR, IPSec)

Visually - Layer 2 VPN

Slide 16 of 119

Copyright © 2003 The MPLS & Frame Relay Alliance

Visually - Layer 3 VPN

Slide 17 of 119

Copyright © 2003 The MPLS & Frame Relay Alliance

MPLS VPN Tutorial Agenda

Introduction to MPLS and MPLS VPNs

• Defining Layer 2 and 3 VPNs?

Layer 3 MPLS VPN

- BGP Review
- RFC 2547bis Key Characteristics
- BGP/MPLS VPN Architecture Overview
 - ✓ VPN Routing and Forwarding (VRF) Tables
 - Overlapping VPNs
 - ✓ VPN Route Distribution
 - ✓ VPN Packet Forwarding
 - Scaling L3VPNs and Route Reflectors

What is **BGP**?

- BGP is an exterior gateway protocol that allows IP routers to exchange network reachability information.
- BGP became an internet standard in 1989 (RFC 1105) and the current version, BGP-4 was published in 1994 (RFC 1771).
- BGP is continuing to evolve through the Internet standards process.

IGP vs. EGP

Interior Gateway Protocol

- RIP, OSPF, IS-IS
- Dynamic, some more than others
- Define the routing needed to pass data <u>within</u> a network

Exterior Gateway Protocol

- BGP
- Less Dynamic than IGPs
- Defines the routing needed to pass data <u>between</u> networks

Internal Border Gateway Protocol

i**BGP** - BGP between routers in the same AS.

External Border Gateway Protocol

eBGP - BGP between routers in two different AS's.

MPLS VPN Tutorial Agenda

Introduction to MPLS and MPLS VPNs

• Defining Layer 2 and 3 VPNs?

Layer 3 MPLS VPN

- BGP Review
- RFC 2547bis Key Characteristics
- BGP/MPLS VPN Architecture Overview
 - ✓ VPN Routing and Forwarding (VRF) Tables
 - Overlapping VPNs
 - ✓ VPN Route Distribution
 - VPN Packet Forwarding
 - Scaling L3VPNs and Route Reflectors

RFC 2547bis BGP/MPLS VPNs *Key Characteristics*

- Requirements:
 - Support for overlapping, private IP address space
 - Different customers run different IGPs (i.e. RIP, OSPF, IS-IS)
- Solution:
 - VPN network layer is terminated at the edge (PE)
 - ✓ PE routers use plain IP with CE routers

BGP/MPLS VPNs *Key Characteristics*

- P routers (LSRs) are in the core of the MPLS cloud
- P and PE (LERs) routers run an IGP and a label distribution protocol
 - Labelled VPN packets are transported over MPLS core
- PE routers are MP-iBGP fully meshed
 - for dissemination of VPN membership and reachability information between PEs

Copyright © 2003 The MPLS & Frame Relay Alliance

VPN Routing and Forwarding (VRF) Tables

- Each VPN needs a separate <u>VPN routing and</u> <u>forwarding instance (VRF)</u> in each PE router to
 - Provides VPN isolation
 - Allows overlapping, private IP address space by different organizations

VPN Routing and Forwarding (VRF) PE to CE Router Connectivity

- Protocols used between CE and PE routers to populate VRFs with customer routes
 - BGP-4
 - ✓ useful in stub VPNs and transit VPNs
 - RIPv2
 - OSPF
 - static routing
 - ✓ particularly useful in stub VPNs
- Note:
 - Customer routes need to be advertised between PE routers
 - Customer routes are not leaked into backbone
 IGP

VPN Routing and Forwarding (VRF) Overlapping VPNs

- Examples:
- Extranet
- VoIP Gateway

- A VPN is a collection of <u>sites</u> sharing a common routing information (routing table)
- A VPN can be viewed as a community of interest (or Closed User Group)

VPN Routing and Forwarding (VRF) Overlapping VPNs

Examples:

- Extranet
- VoIP Gateway

- A site can be part of different VPNs
- A site belonging to different VPNs may or may not be used as a transit point between VPNs

If two or more VPNs have a common site, address space must be unique among these VPNs Copyright © 2003 The MPLS & Frame Relay Alliance

VRFs and Route Distribution

- Multiple VRFs are used on PE routers
- The PE learns customer routes from attached CEs
- Customer routes are distributed to other PEs with MP-BGP
- Different IGPs or eBGP supported between PE and CE peers

VPN Route Distribution *Route Targets*

Route Target attributes

- "Export" Route Target: Every <u>VPN route is tagged</u> with one or more route targets when it is <u>exported</u> from a VRF (to be offered to other VRFs)
- "Import" Route Target: A set of routes targets can be associated with a VRF, and all routes tagged with at least one of those route targets will be inserted into the VRF

VPN Route Distribution *Route Targets*

VPN Route Distribution

• How will the PE routers exchange information about VPN customers and VPN routes between themselves?

Option #1: PE routers run a different routing algorithm for each VPN

 <u>Scalability problems</u> in networks with a large number of VPNs

Difficult to support overlapping VPNs

VPN Route Distribution

• How will the PE routers exchange information about VPN customers and VPN routes between themselves?

Option #2: BGP/MPLS VPN - PE routers run a single routing protocol to exchange all VPN routes

• Problem: <u>Non-unique IP addresses</u> of VPN customers. BGP always propagates one route per destination not allowing address overlap.

VPN Route Distribution *VPN-IPv4 Addresses*

- VPN-IPv4 Address
 - VPN-IPv4 is a globally unique, 96bit routing prefix

Route Distinguisher (RD)	IPv4 Address		
64 bits Makes the IPv4 address globally unique, RD is configured in the PE for each VRF, RD may or may not be related to a site or a VPN	32 bits IP subnets advertised by the CE routers to the PE routers		

VPN Route Distribution *VPN-IPv4 Addresses*

Route Distinguisher format

- ASN:nn
 - Autonomous System Number (ASN) assigned by Internet Assigned Number Authority (IANA)

- IP-address:nn
 - ✓ use only if the MPLS/VPN network uses a private AS number

BGP-AS4:nn

4-byte Autonomous System Number (BGP-AS4)

VPN Route Distribution *BGP with Multiprotocol Extensions*

- How are 96-bit VPN-IPv4 routes exchanged between PE routers?
- BGP with Multiprotocol Extensions (MP-BGP) was designed to carry such routing information between peer routers (PE)
 - propagates <u>VPN-IPv4</u> addresses
 - carries additional BGP route attributes (e.g. <u>route</u> <u>target</u>) called extended communities

VPN Route Distribution *BGP with Multiprotocol Extensions*

- A BGP route is described by
 - standard BGP Communities attributes (e.g. Local Preference, MED, Next-hop, AS_PATH, Standard Community, etc.)
 - extended BGP Communities attributes
- Extended Communities
 - Route Target (RT)
 - $\checkmark\,$ identifies the set of sites the route has to be advertised to
 - Route Origin (RO)/Site of Origin
 - ✓ identifies the originating site
 - ✓ to prevent routing loops with multi-homed customer sites

IGP Label Distribution

- All routers (P and PE) run an IGP and a label distribution protocol
- Each P and PE router has routes for the backbone nodes and a label is associated to each route
- MPLS forwarding is used within the backbone

MP-BGP Route Distribution

Copyright © 2003 The MPLS & Frame Relay Alliance

MP-BGP Route Distribution *Summary*

- VPN Routing and Forwarding (VRF) Table
 - Multiple routing tables (VRFs) are used on PEs
 - ✓ VPNs are isolated
- Customer addresses can overlap
 - Need for unique VPN route prefix
 - PE routers use MP-BGP to distribute VPN routes to each other
 - For security and scalability, MP-BGP only propagates information about a VPN to other routers that have interfaces with the same route distinguisher value.

MP-BGP = *BGP* with *Multiprotocol* Extensions

VPN Packet Forwarding

PE-to-PE connectivity via LSPs

- All routers (P and PE) run an IGP and a label distribution protocol
- Each P and PE router has routes for the backbone nodes and a label is associated to each route
- MPLS forwarding is used within the backbone

VPN Packet Forwarding Label Stacking

Ingress PE router uses <u>two-level label stack</u>

- VPN label (inner label) assigned by the egress PE router
- **IGP label** (top label) identifying the PE router
- Label stack is attached in front of the VPN packet

The MPLS packet is forwarded across the P network

Slide 43 of 119

VPN Packet Forwarding *Label Stacking*

VPN Packet Forwarding *Penultimate Hop Popping*

Core Routers (P Routers)

- not involved in MP-BGP
- does not make routing decision based on VPN addresses
- forwards packet based on the top label value

 P routers do not need to carry VPN routing information or Internet routing information, thus providing better network scalability

Scaling BGP/MPLS VPNs

- Scalability of BGP/MPLS VPNs
 - Expanding the MPLS core network
 - without impact on the VPN services, e.g. adding P routers (LSRs), new or faster links
 - Label stacking
 - allows reducing the number of LSPs in the network core and avoiding LSP exhaustion
 - VPN Route Distribution
 - ✓ Route Reflectors

Scaling BGP/MPLS VPNs Route Reflectors

- BGP Route Reflectors
 - Existing BGP technique, can be used to scale VPN route distribution
 - PEs don't need full mesh of BGP connections, only connect to RRs
 - By using multiple RRs, no one box needs to have all VPN routes
 - Each edge router needs only the information for the VPNs it supports
 - ✓ directly connected VPNs

Reference Material

Books:

"BGP4 Inter-Domain Routing in the Internet" by John Stewart ISBN 0-201-37951-1
"Internet Routing Architectures" by Bassam Halabi ISBN 1-56205-652-2
"Interconnections: Bridges and Routers" by Radia Perlman ISBN
"Internetworking with TCP/IP Volume 1" by Douglas Comer ISBN 0-13-468505-9
"TCP/IP Network Administration - Second Edition" by Craig Hunt ISBN 1-56592-322-7

"Routing in the Internet" by Christian Huitema ISBN 0-13-132192-7

Mail Lists:

SSR mailinglist - majordomo@cabletron.com GateD mailinglists - See www.gated.org North American Network Operators Group (NANOG) mailist - See www.merit.org

Reference Material *Request For Comments - RFCs*

- 08/98 RFC2385PS "Protection of BGP Sessions via the TCP MD5 Signature Option"
- 02/98 RFC 2283PS "Multiprotocol Extensions for BGP-4"
- 01/97 RFC 2042 "Registering New BGP Attribute Types"
- 08/96 RFC 1998 "An Application of the BGP Community Attribute in Multi-home Routing"
- 08/96 RFC 1997 "BGP Communities Attribute"
- 06/96 RFC 1966 "BGP Route Reflection An alternative to full mesh"
- 06/96 RFC 1965 "Autonomous System Confederations for BGP"
- 10/95 RFC 1863 "A BGP/IDRP Route Server alternative to a full mesh routing"
- 08/95 RFC 1817 "CIDR and Classful Routing"
- 03/95 RFC 1774 "BGP-4 Protocol Analysis"
- 03/95 RFC 1773 "Experience with the BGP-4 protocol"
- 03/95 RFC 1772 "Application of the Border Gateway Protocol in the Internet"
- 03/95 RFC 1771 "A Border Gateway Protocol 4 (BGP-4)
- 12/94 RFC 1745 "BGP4/IDRP for IP---OSPF Interaction"
- 07/94 RFC 1657 "Definitions of Managed Objects for BGP-4 using SMIv2"
- 09/93 RFC 1520 "Exchanging Routing Information Across Provider Boundaries in CIDR"
 - "CIDR; an Address Assignment and Aggregation Strategy"
 - "An Architecture for IP Address Allocation with CIDR"

09/93 - RFC 1519

09/93 - RFC 1518

Reference Material Internet Drafts

08/98 "LDP Specification" 08/98 "Border Gateway Multicast Protocol (BGMP): Protocol Specification" 08/98 "A Framework for Inter-Domain Route Aggregation" 08/98 "Routing Policy Configuration Language (RPCL)" 08/98 "Carrying Label Information in BGP-4" 08/98 "Capabilities Negotiation with BGP-4" 08/98 "BGP Security Analysis" 08/98 "A Border Gateway Protocol 4 (BGP-4)" 07/98 "Using RPSL in Practice" 07/98 "Multiprotocol Label Switching Architecture" 06/98 "NHRP for Destinations off the NBMA Subnetwork" 05/98 "BGP Route Flap Damping" 04/98 "BGP-4 Capabilities Negotiation for BGP Multiprotocol Extensions" 03/98 "To Be Multihomed: Requirements & Definitions" 03/98 "BGP-4 over ATM and Proxy PAR" 02/98 "Use of BGP-4 Multiprotocol Extensions for IPv6 Inter-Domain Routing" 02/98 "Carrying Label Information in BGP-4" 01/98 "DNS-base NLRI origin AS verification in BGP"

Copyright © 2003 The MPLS & Frame Relay Alliance

Reference Material Internet Drafts – L3VPN

General

- Guidelines of Applicability Statements for PPVPNs
- A Framework for Layer 3 Provider Provisioned Virtual Private Networks
- Generic Requirements for Provider Provisioned VPN
- Service requirements for Layer 3 Provider Provisioned Virtual Private Networks
- Framework for PPVPN Operations and Management
- Definition of Textual Conventions for Provider Provisioned Virtual Private Network Management
- Security Framework for Provider Provisioned Virtual Private Networks
- Using BGP as an Auto-Discovery Mechanism for Provider-provisioned VPNs
- CE-to-CE Member Verification for Layer 3 VPNs

BGP/MPLS VPN

- Applicability Statement for BGP/MPLS IP VPNs
- BGP/MPLS IP VPNs
- OSPF as the PE/CE Protocol in BGP/MPLS VPNs
- Use of PE-PE IPsec in RFC2547 VPNs
- Use of PE-PE GRE or IP in RFC2547 VPNs
- BGP-MPLS VPN extension for IPv6 VPN
- MPLS/BGP Virtual Private Network Management Information Base Using SMIv2

Virtual Router

- Applicability Statement for Virtual Router-based Layer 3 PPVPN approaches
- Network based IP VPN Architecture using Virtual Routers
- Virtual Router Management Information Base Using SMIv2

• An Architecture for Provider Provisioned CE-based Virtual Private Networks using IPsec

MPLS based Virtual Private Network Services

Break

http://www.mplsforum.org

http://www.frforum.com

MPLS VPN Tutorial Agenda

Layer 2 VPNs

- IETF PWE3 and L2VPN WG update
- Encapsulation and Label Stacking
- Virtual Private Wire Services VPWS
 - Pt-to-pt Ethernet, Pt-to-pt ATM, Pt-to-pt Frame Relay
- Virtual Private LAN Services VPLS
- Introduction to Multi-Service Interworking
 - Carrier Challenges at the Edge
 - Interworking History and Definition
 - Network and Service Interworking (FRF.5 and FRF.8.1)
 - MPLS FR Alliance Multi-Service Interworking Work Actions

Carrier Migration Examples

MPLS L2 VPN Market Drivers What can we conclude?

Layer 3 IP is not the only traffic

- Still a lot of legacy SNA, IPX etc
- Large enterprises have legacy protocols
- Layer 3 IP VPNs are not the whole answer
 - IP VPNs cannot handle legacy traffic
- Layer 2 legacy traffic widely deployed

Carriers need to support Layer 2 and Layer 3 VPNs

Slide 55 of 119

MPLS Layer 2 VPNs

- Point-to-point layer 2 solutions
 - Virtual Private Wire Services VPWS
 - Similar to ATM / FR services, uses tunnels and connections (LSPs)
 - Customer gets connectivity only from provider
 - Ongoing work to encapsulate Ethernet, ATM, FR, TDM, SONET, etc
- Multi-point layer 2 solutions
 - Virtual Private LAN Services VPLS
 - Virtual Private LAN Services (VPLS) aka TLS
 - Ethernet Metro VLANs / TLS over MPLS
 - Independent of underlying core transport

All drafts "currently" support PWE3 (Martini) Ethernet encapsulation

Differences in drafts for discovery and signaling

Slide 56 of 119

Copyright © 2003 The MPLS & Frame Relay Alliance

MPLS Point-to-Point Service

- Tunnel Label determines path through network
- VC Label identifies VLAN, VPN, or connection at the end point

MPLS Point-to-Point Services Label Stacking

Tunnel Header	Demux Field	VC Encaps Information	Layer 2 payload				
1	2	3					
Three Layers of Encapsulation							
1) <u>Tunnel Header</u> : Contains information needed to transport the							
PDU across the IP or MPLS network							
2) <u> </u>	2) <u>Demultiplexer Field:</u> Used to distinguish individual emulated VCs						
١	within a single tunnel						
3) <u> </u>	Emulated VC Encapsulation: Contains the information about the						
	enclosed P	DU (known	as Control Word)				

- Tunnel Header determines path through network
- Demultiplexer Field identifies VLAN, VPN, or connection at the end point

All services look like a Virtual Circuit to MPLS network

Encaps Information Field

bits	4	4	8	16	
	Rsvd	Flags	Length	Sequence Number	

Control Word

- Layer 2 header fields may be discarded at ingress
- Control word carries "flag" bits depending on encapsulation
 - (FR: FECN, BECN, C/R, DE, ATM: CLP, EFCI, C/R, etc)
- Length required when padding small frames on links which have a minimum frame size
- Sequence number is optional. It is used to detect out of order delivery of frames.

LDP - Label Mapping Message

Label Mapping	Message Length		
Message	e ID		
FEC TI	LV		
Label TLV			
Label Request Message ID TLV			
LSPID TLV (optional)			
Traffic TLV (optional)			

Slide 60 of 119

New VC FEC Element Defined

VC TLV	С	VC Type	VC Info Length	
Group ID				
VC ID				
Interface Parameters				

Virtual Circuit FEC Element

- C Control Word present
- VC Type FR, ATM, Ethernet, HDLC, PPP, ATM cell
- VC Info Length length of VCID field
- Group ID user configured group of VCs representing port or tunnel index
- VC ID used with VC type to identify unique VC
- Interface Parameters Specific I/O parameters

Slide 61 of 119

Layer 2 Encapsulation Ongoing work in PWE3

- draft-ietf-pwe3-requirements-06.txt 06/03
 - "This document describes base requirements for the Pseudo-Wire Emulation Edge to Edge Working Group (PWE3 WG). It provides guidelines for other working group documents that will define mechanisms for providing pseudo-wire emulation of Ethernet, ATM, Frame Relay, raw HDLC, and MPLS. "
- draft-ietf-pwe3-arch-05.txt 08/03
 - "This document describes an architecture for Pseudo Wire Emulation Edge-to-Edge (PWE3). It discusses the emulation of services (such as Frame Relay, ATM, Ethernet TDM and SONET/SDH) over packet switched networks (PSNs) using IP or MPLS. It presents the architectural framework for pseudo wires (PWs), defines terminology, specifies the various protocol elements and their functions."

Layer 2 Encapsulation PWE3 WG documents (original Martini work)

- Pseudowire Set-up and Maintenance using LDP
 - ✓ draft-ietf-pwe3-control-protocol-03.txt June 03
- ATM AAL5 and ATM cell
 - ✓ draft-ietf-pwe3-atm-encap-02.txt June 03
- Frame Relay
 - ✓ draft-ietf-pwe3-frame-relay-01.txt July 03
- Ethernet / 802.1q VLAN
 - ✓ draft-ietf-pwe3-ethernet-encap-03.txt June 03
- PPP/HDLC

✓ draft-martini-ppp-hdlc-encap-mpls-00.txt

MPLS Ethernet Encapsulation

draft-ietf-pwe3-ethernet-encap-03.txt

Original Ethernet frame

Encapsulated Ethernet over MPLS over Ethernet Transport

- Ingress device strips the Ethernet preamble and FCS
- Ethernet header becomes "control word"
- New MPLS Ethernet header (type 0x8847) and new FCS is added to MPLS Ethernet packet

MPLS Ethernet Encapsulation

draft-ietf-pwe3-ethernet-encap-03.txt

Original Ethernet frame

Encapsulated Ethernet over MPLS over Ethernet Transport

- Martini VC Encaps field is normally 32 bits
- Ethernet VC Encaps field equals
 - DA and SA at 6 bytes each
 - Length at 2 bytes
 - 802.1q VLAN at 4 bytes
 - Total at 18 bytes (144 bits vs 32 bits)

Life of a Frame Ethernet over Ethernet MPLS

ATM and Frame Relay Service Reference Model

PE = Provider Edge CE = Customer Edge

Requirements for Pseudo Wire Emulation Edge-to Edge (PWE3)

Slide 67 of 119

ATM AAL5 Encapsulation

draft-ietf-pwe3-atm-encap-02.txt

ATM Control Word

- Ingress reassembles AAL5 frames and strips 8 octet AAL5 trailer
- Required control word includes:
 - T = Transport type bit
 - ✓ Common Part Convergence Sublayer-Protocol Data Unit (AAL5 CPCS-PDU)
 - ✓ Or ATM Cell
 - E = EFCI bit Efficient Forward Congestion
 - L = CLP bit Cell Loss Priority
 - C = Command / Response bit

ATM Cell Mode Encapsulation

draft-ietf-pwe3-atm-encap-02.txt

- Ingress performs no reassembly
- Control word is <u>optional</u>:
 - Length may be used to infer number of cells
 - Flags set to zero

MPLS PWE3 FR Encapsulation draft-ietf-pwe3-frame-relay-01.txt

- Main Functions: FR over Pseudo Wire FRoPW
 - Encapsulation of FR specific information in a suitable FRoPW packet (ingress function)
 - Transfer of a FRoPW packet through IP / MPLS network
 - Extraction of FR specific information from a FRoPW packet (egress function)
 - Generation of native FR frames at egress
 - Other operations to support FR services

MPLS PWE3 FR Encapsulation

draft-ietf-pwe3-frame-relay-01.txt

- Two Mapping modes defined between FR VCs and FR PWs
 - One-to-one mapping
 - One FR VC mapped to a pair of unidirectional PWs

Slide 71 of 119

MPLS PWE3 FR Encapsulation

draft-ietf-pwe3-frame-relay-01.txt

- Two Mapping modes defined between FR VCs and FR PWs
 - Many-to-one or port mode mapping (Optional w / header)
 - Many FR VCs mapped to a pair of Unidirectional PWs

MPLS Frame Relay Encapsulation draft-ietf-pwe3-frame-relay-01.txt

MPLS VPN Tutorial Agenda

Layer 2 VPNs

- IETF PWE3 and L2VPN WG update
- Encapsulation and Label Stacking
- Virtual Private Wire Services VPWS
 - Pt-to-pt Ethernet, Pt-to-pt ATM, Pt-to-pt Frame Relay
- Virtual Private LAN Services VPLS

Introduction to Multi-Service Interworking

- Carrier Challenges at the Edge
- Interworking History and Definition
- Network and Service Interworking (FRF.5 and FRF.8.1)
- MPLS FR Alliance Multi-Service Interworking Work Actions

Carrier Migration Examples

MPLS Layer 2 Multipoint Services *IETF Virtual Private LAN Services - VPLS*

- draft-ietf-ppvpn-vpls-requirements-01.txt 10/02
 - Describes service requirements related to emulating a Virtual Private LAN segment over an IP or MPLS network
 - VPLS topology "may" be;
 - Point-to-point, Point-to-multipoint, Any-to-any (full mesh), Mixed (partial mesh), Hierarchical
 - Service to the customers "must" retain the typical LAN any-to-any connectivity

draft-ietf-ppvpn-I2-framework-02.txt - 01/03

MPLS VPLS Architecture

MPLS VPLS

VPLS Reference Model

MPLS VPLS

VPLS Reference Model

Virtual Private LAN Services draft-ietf-l2vpn-vpls-ldp-00.txt

- Updated June 2003
- Defines an Ethernet (IEEE 802.1D) learning bridge model over MPLS Martini <u>Ethernet</u> circuits
- Defines the LER (PE) function for an MPLS VPLS network
- Creates a layer 2 broadcast domain for a closed group of users
- MAC address learning and aging on a per LSP basis
- Packet replication across LSPs for multicast, broadcast, and unknown unicast traffic
- Includes Hierarchical VPLS
 - formerly draft-khandekar-ppvpn-hvpls-mpls-00.txt

Virtual Private LAN Services draft-ietf-l2vpn-vpls-ldp-00.txt

- Tunnel LSPs are established between PEs
- Customers designated C1 and C2 are part of two independent Virtual Private LANs
- Layer 2 VC LSPs are set up in Tunnel LSPs
- Core MPLS network acts as a LAN switch

Virtual Private LAN Services draft-ietf-l2vpn-vpls-ldp-00.txt

- Reduces signaling and packet replication to allow large scale deployment of VPLS
- Uses Martini VC / LSPs between edge MTU and VPLS aware PE devices

Slide 81 of 119

Copyright © 2003 The MPLS & Frame Relay Alliance

VPLS Internal PE Architecture

VPLS Code

VPLS Forwarding

- Learns MAC addresses per pseudo-wire (VC LSP)
- Forwarding based on MAC addresses
- Replicates multicast & broadcast frames
- Floods unknown frames
- Split-horizon for loop prevention
- VPLS Signaling
 - Establishes pseudo-wires per VPLS between relevant PEs
- VPLS Discovery (Manual, LDP, BGP, DNS)

Bridging Code

Standard IEEE 802.1D code

- Used to interface with customer facing ports
- Might run STP with CEs
- Used to interface with VPLS
- Might run STP between PEs

VPLS Scalability *Parameters*

- Number of MAC Addresses
- Number of replications
- Number of LSPs
- Number of VPLS instances
- Number of LDP peers
- Number of PEs

VPLS Scalability *Signaling Overhead – <u>Flat</u> Topology*

 Architecture has a direct impact on the Signaling Overhead (control plane)

Copyright © 2003 The MPLS & Frame Relay Alliance

VPLS Scalability Signaling Overhead – <u>Hierarchical</u> Topology

Architecture has a direct impact on the Signaling Overhead (control plane)

VPLS Scalability *Replication Overhead – <u>Flat</u> Topology*

 Architecture has a direct impact on <u>Replication Overhead</u> (forwarding plane)

VPLS Scalability *Replication Overhead – <u>Hierarchical</u> Topology*

 Architecture has a direct impact on <u>Replication Overhead</u> (forwarding plane)

VPLS Scalability Adding a New Site – <u>Flat</u> Topology

Architecture affects <u>Provisioning & Signaling</u> between all nodes

VPLS Scalability Adding a New Site – <u>Hierarchical</u> Topology

Architecture affects Provisioning & Signaling between all nodes

VPLS Scalability Inter-Metro Service

 Architecture has a direct impact on <u>ability to offer</u> <u>Inter-Metro Service</u>

VPLS Scalability Inter-Metro Service

 Architecture has a direct impact on <u>ability to offer</u> <u>Inter-Metro Service</u>

VPLS Scalability *FIB Size*

- VPLS FIB size depends on the type of Service Offering:
 - Multi-protocol Inter-connect service
 - ✓ Mimics the DSL Tariff Model
 - ✓ Customers are charged per site per block of MAC addresses
 - Router Inter-connect
 - ✓ One MAC address per site
- Same Network Design principles apply for
 - MAC FIB Size of VPLS Service and,
 - Route Table Size of VPRN Service

MPLS Layer 2 Multipoint Services Other VPLS Drafts

- draft-ietf-l2vpn-vpls-bgp-00.txt 05/03
 - Describes the use of BGP for discovery and signaling
- draft-rosen-ppvpn-l2-signaling-02.txt
 - Describes and compares signaling issues
- Draft-shah-ppvpn-ipls-02.txt
 - IP only LAN service
- draft-radoaca-ppvpn-gvpls-02.txt 06/03
 - GVPLS/LPE Generalized VPLS Solution based on LPE Framework
- draft-stokes-vkompella-ppvpn-hvpls-oam-02.txt 06/03
 - Testing Hierarchical Virtual Private LAN Services

VPLS Conclusion

VPLS standardization

- PWE3 encapsulation and control
- L2VPN VPLS draft convergence and momentum
- Signaling and Discovery options
- IEEE 802.1ad Provider Bridge WG actions
- Next IETF meeting Minneapolis MN 11/9 11/14 2003

MPLS VPNs Summary

- Layer 2 versus Layer 3
 - Apples and Oranges
- Layer 3 MPLS VPNs
 - Deployed and at RFC stage
- Layer 2 MPLS VPNs
 - Lot's of Interest from Carriers and Vendors
 - Many new drafts lots of consolidation
 - We are in "concept" stage
 - Solutions available 2003

MPLS VPN Tutorial Agenda

Layer 2 VPNs

- IETF PWE3 and L2VPN WG update
- Encapsulation and Label Stacking
- Virtual Private Wire Services VPWS
 - Pt-to-pt Ethernet, Pt-to-pt ATM, Pt-to-pt Frame Relay
- Virtual Private LAN Services VPLS
- Introduction to Multi-Service Interworking
 - Carrier Challenges at the Edge
 - Interworking History and Definition
 - Network and Service Interworking (FRF.5 and FRF.8.1)
 - MPLS FR Alliance Multi-Service Interworking Work Actions

Carrier Migration Examples

Why Interwork?

- Carriers want a common edge infrastructure to support and "Interwork" with legacy and new services
- Carriers want to support all legacy transports technologies and services
- Carriers are planning to converge on an IP / MPLS core
- Carriers want to seamlessly introduce Metro Ethernet services and IP VPNs

Network Services Market *Broadband Data Services Growth Projections*

- Private Lines, FR, and ATM comprise 93 % of the \$26B US broadband business services market now, and 86 % of the projected \$37B total in 2007
 - Other above includes Ethernet, X.25, etc

Source: Vertical Systems Group July 2003

Copyright © 2003 The MPLS & Frame Relay Alliance

Interworking History

- The Frame Relay Forum defined the <u>Network</u> <u>Interworking</u> function between Frame Relay and ATM in the <u>FRF.5</u> document finalized in1994.
- The Frame Relay Forum defined the <u>Service</u> <u>interworking</u> function between Frame Relay and ATM in the <u>FRF.8.1</u> document finalized in 2000.
- Why define FR and ATM interworking?
 - ATM cores with FR access services deployed
 - ATM and Frame Relay circuits are point-to-point
 - Both data links have services that are somewhat similar in nature even though the signaling is different

InterWorking Function - IWF Network vs Service IWF

Network Interworking

- <u>Network Interworking</u> is used when one protocol is "tunneled" across another "intermediary" network / protocol
- The <u>Network Interworking</u> function "terminates" and "encapsulates" the protocol over a Pt-to-Pt connection

- <u>Service Interworking</u> is required to "translate" one protocol to another protocol – used between two unlike protocols
- The <u>Service Interworking</u> function "translates" the control protocol information transparently by an interworking function (IWF)

Slide 102 of 119

Network Interworking FRF.5 Reference Model

- Network Interworking <u>encapsulates</u> the L2 Service
- FRS is <u>encapsulated</u> and sent across ATM network
- Service at the end points <u>have to be</u> the same

Service Interworking FRF.8.1 Reference Model

- Service Interworking <u>translates</u> the L2 Service
- FR service is <u>translated</u> into ATM service

Services at the end points *are not* the same

Slide 104 of 119

Why not continue with ATM IW?

- ATM is optimized for voice transport cell overhead etc
- Cells are simply fixed length packets and can be carried unchanged across an MPLS network
- Packets are not cells and must be adapted to be carried across ATM
- MPLS is optimized for packet transport
- Carriers want to converge on IP/MPLS cores supporting both new and legacy services

Why Migrate to MPLS?

- MPLS allows service providers to converge onto a single infrastructure while offering existing services
- MPLS enables new service offerings and simplifies service provisioning
- MPLS supports rapid growth in IP applications and services
- MPLS allows the integration of services management into a common OSS strategy
- MPLS supports the integration of packet technologies and optical cores

MPLS Multi-Service Interworking

MPLS Connects Services at the Edge

Copyright © 2003 The MPLS & Frame Relay Alliance

Slide 107 of 119

MPLS Network Interworking *IETF PWE3 Pt-to-Pt Encapsulation*

Service has to be pt-to-pt between like services: ATM to ATM, FR to FR, Enet to Enet, etc

Slide 108 of 119

Copyright © 2003 The MPLS & Frame Relay Alliance
MPLS Multi-Service Interworking Reference Model

- PE = Provider Edge
- CE = Customer Edge
- **PSN** = Packet Switched Network
- IWF = InterWorking Function

Multi-Service: Services equal to FR, ATM, Ethernet

Slide 109 of 119

Standards and Alliance Work

IETF RFCs

 RFC 2684 for ATM (previously 1483) and 2427 for FR (previously 1490) define an encapsulation for carrying layer 2 or layer 3 PDUs over ATM and FR respectively

MPLS FR Alliance

- Scope and Requirements Baseline Text
 - Mpls2003.043.00 July 2003
 - Mpls2003.114.00 September 2003
- Metro Ethernet Forum
 - Ethernet Internetworking Function (E-IWF) draft Shah

MPLS VPN Tutorial Agenda

Layer 2 VPNs

- IETF PWE3 and L2VPN WG update
- Encapsulation and Label Stacking
- Virtual Private Wire Services VPWS
 - Pt-to-pt Ethernet, Pt-to-pt ATM, Pt-to-pt Frame Relay
- Virtual Private LAN Services VPLS

Introduction to Multi-Service Interworking

- Carrier Challenges at the Edge
- Interworking History and Definition
- Network and Service Interworking (FRF.5 and FRF.8.1)
- MPLS FR Alliance Multi-Service Interworking Work Actions
- Carrier Migration Examples

Existing Frame Relay / ATM Network

Typical Scenario

- Multiple networks
- Multiple services
 - Voice, Video, Data
- FR, ATM, DSL, IP, etc

Existing IP / MPLS Network

Typical Scenario

- Multiple networks
- Multiple services
 - Voice, Video, Data
- FR, ATM, DSL, IP, etc

IP / MPLS network

- SDH/SONET transport
- Separate from ATM
- IP Routed Network
- MPLS deployed ?
- RFC 2547bis IP VPNs ?

Offer Ethernet VPLS

Layer 2 VPLS

- PWE3 Encapsulation
- Layer 2 Ethernet VPLS

Slide 114 of 119

Frame Relay / ATM Migration

Slide 115 of 119

Complete MPLS VPN Solution

MPLS VPNs

- PWE3 Encapsulation
- Layer 2 Ethernet VPLS
- ATM legacy migration
- FR legacy migration
- Layer 3 2547bis VPNs
- Combined multiple services
- New Multi-Service Interworking

MPLS as a Service Enabler

VPLS = Virtual Private LAN Services

VPWS = Virtual Private Wire Services

L3 IP VPN = RFC2547-bis

Slide 117 of 119

For More Information....

- http://mplsforum.com
- http://www.mplsforum.org/board/
- http://www.frforum.com
- http://www.ietf.org
- http://www.itu.int
- http://www.atmforum.com

Slide 118 of 119

MPLS based Virtual Private Network Services

Thank You gleonard@riverstonenet.com

http://www.mplsforum.com