MPLSCon 2006 New York City, May 25, 2006

Implementing IPv6 and IPv6 VPN in MPLS Networks

Luyuan Fang

AT&T

- Benefits and Key Drivers for IPv6 and IPv6 VPN
- General Requirements for IPv6 VPN in MPLS Networks
- Implementing IPv6 and IPv6 VPN over MPLS Backbone
- Design Considerations and Challenges
- Conclusions

Benefits of IPv6

Key benefit – increasing address space

> IPv4: 32-bit, ~ 4.3 billion addresses

- > IPv6: 128-bit, ~ 340 undecillion addresses (3.4x10³⁸⁾
- Other advantages
 - Auto-configuration via neighbor discovery
 - Mobility
 - Better routing efficiency and flexibility
 - Six fields removed
 - Extension header added
 - IPSec is mandatory
 - Performance improvement for broadband utilization
 - > Jumbograms 4 GB (going to 32) in v6 vs. 64KB in v4
 - > use flow label to largely increase the network utilization
 - QoS included in IPv6 headers

Copyright (c) 2006 AT&T. All Rights Reserved

Key Drivers for IPv6 and IPv6 VPN

- Large address space is the most compelling reason for IPv6
 - IPv4 addresses limitation starts to restrict Internet growth and use, especially in China, India, and other heavily populated Asian countries
 - IPv4 address exhaustion has been predicted in less than 8 years
 - Government mandates: Japan, US, China...
 - Explosion of wireless IP devices
 - 2 billion mobile phones by 2006, not enough with what is left today with IPv4 addresses if static addresses are used.
- The urgency of providing IPv6 VPN services in US
 - US Office of Management and Budget (OMB) government Mandate in 8/2005
 - "Federal agencies must use the next-generation Internet service known as Internet protocol version 6 (IPv6) by June 2008...".
 - Following the mandate, government agencies would need to upgrade their IPv4 VPNs to IPv6 VPNs by mid 2008

IPv6 Implementation Options (1)

- Native IPv6 network All P and PE are IPv6 capable
- IPv6 tunneling through IPv4 network
 - IPv6 manually configured tunnel (RFC 2893)
 - IPv6 over IPv4 GRE Tunnel
 - Tunnel broker
 - Auto 6to4 tunnel

IPv6 Implementation Options (2)

Dual stack 6PE solution

- Only 6PEs are IPv6 capable, P routers are IPv6 unaware, core remain unchanged
- Dual stack: Support both IPv4 and IPv6 on the same interface
- IPv6 reachability established among 6PEs via MP-BGP w v6 support
- Easy v6 migration or existing IPv4 MPLS backbone
- Solution is more scalable compared to tunneling solutions.

MPLS BGP IPv6 VPN Requirements (1)

• Support the same features set implemented for VPNv4

2547bis VPNv6 features	Access
VPNv6 types	 Access types
Enterprise VPN	POS, FR, ATM, PPP, MLPPP, IMA, FR
Carrier's Carrier VPN	encap over POS, Ethernet
Inter-AS/Inter-provider VPN	
VPNv6 topologies	 Access speed
Any-to-any	FT1/FE1 to T3/E3
Hub-and-spoke	OC-3/STM-1 to OC-192/STM-64
> Hybrid	Ethernet: FE to 10GE
VPNv6 features	PE-CE connections
QoS per interface / logical interface	> eBGP, eBGP with labels
Multi-homing load sharing	Static, Static with labels
Multicast VPNv6	> OSPF, OSPF with labels
	Other protocols supported in VPNv4

MPLS BGP IPv6 VPN Requirements (2)

- No impact to the existing MPLS core
- No performance impact to VPNv4 Services on the same router
- Support of route reflection
- Support of v6 management and monitoring capability
- At least the same level of security as VPNv4
- Scalable in terms of data plane and control plane, e.g.
 - > Total bandwidth, # of ports, # of sub-interfaces, # of MLPPP bundle
 - > # of BGP sessions, # of routes, # of MVPN routes
- Fast convergence
- Inter-operability among different platforms
- Ease of operation

IPv6 L3 VPN* Technologies

* Based on rfc2547bis and draft-ietf-l3vpn-bgp-ipv6.

• Reuse existing VPNv4 components:

- RD, RT, VRF, MPLS
- New components for VPNv6
 - MP-BGP VPNv6 address-family
 - > RD [64 bits] + IPv6 prefix [128 bits]
 - Support IPv6 addressing Global/Unique Local/Link Local
 - Distributing VPNv6 addresses among PEs via MP-iBGP over IPv4
 - > RFC 2283 Multiprotocol extension for BGP4
 - > VPN IPv6 NLRI encoding
 - AFI=2 (IPv6); SAFI=128 (MPLS labeled VPNv6)
 - BGP nexthop IPv4-compatible IPv6 address
 - PE advertises to its peer a Next Hop Network Address field containing a VPN-IPv6 address:
 - RD=0
 - IPv6 address is encoded as an IPv4-mapped IPv6 address (::ffff:IPv4 address)

Implementing IPv6 VPN in MPLS Network

- MPLS IPv4 Backbone unchanged (IGPv4, LDPv4)
 - P No upgrade required
 - PE needs support IPv6 BGP VPN extensions
 - LSP IPv4 signaled
- MP-iBGP with VPNv6 AF peering among VPNv6 PEs
- MP-eBGP with IPv6+VRF AF peering with IPv6 CE

Copyright (c) 2006 AT&T. All Rights Reserved

Routing Information Exchange (1)

- CE sends IPv6 updates to its peer PE1 (via e-BGP, static, etc.)
- PE1 translates IPv6 into VPN-IPv6
 - Assign RD, RT, RO according to VPN RED configuration
 - Re-write Next-Hop attribute to PE1
 - Assign label for this VRF/ interface
- PE1 sends MP-iBGP updates to all PE neighbors

Routing Information Exchange (2)

- PE2 receives VPN-IPv6 update, translates it to IPv6
 - Insert the VPN route into VRF X as indicated by RT, per PE2 configuration
- PE2 sets the label associated to VPN-IPv6 address for VPN X, and uses it for forwarding packets to the VPN destination

MPLS VPNv6 Forwarding (1)

- CE2 sends normal IP packets to PE2, destination 2001:100:1:1000::/56
- PE2 performs "longest match" from VRF, find iBGP next hop PE1, then attaches two MPLS labels on the packet:

- > VPN label as the inner label
- > LDP label as the outer label

MPLS VPNv6 Forwarding (2)

- P2 label switches the packet to P1
 - > LDP label (outer) is swapped based the in/out interfaces with pre-assigned label
 - > VPN label (inner) remain untouched P routers are not VPN aware
- P1 performs Penultimate Hop Popping
 - > Remove the top label and forward the rest to PE1
- PE1 aggregates VPN traffic
 - > Use the VPN label to identify outgoing interface (VRF)
 - Remove the VPN label and forward the IP packet to its IP neighbor CE1

Design/Deployment Considerations

- Meeting customer requirements
 - Feature check list no less than VPNv4
 - Time constrains US government mandate: IPv6 compliance by June 2008
- Minimize network impact at initial deployment
 - No backbone changes except P routers may need to support IPv6 for
 - > ECMP
 - Traffic flow accounting
 - Expanding VPNv6 footprint with time and experience
 - Use dedicated VPNv6 RR can be a clean start
 - RD, RT, VRF assignment
 - > Same RD, RT can be used for VPNv4 and VPNv6 in the same VPN
 - Single VRF support both VPNv4 and VPNv6 in the same VPN
- Dual stack support
 - > VPNv4 must be consistent with existing VPNv4 services regardless of the platforms
 - > VPNv6 is green filed, address assignment can take advantage of IPv6
- OSS development for IPv6 and VPNv6 support is a major task

Dual Stack IPv4/v6 VPN Deployment Scenario

- > Both IPv4 and IPv6 address assigned
- > No V4/V6 translation function on PE initially
- Route reflection supports VPNv4 and VPNv6 separate
- Scale VPNv6 routes support by using RT-filter feature to avoid adv. not needed routes to peers

Copyright (c) 2006 AT&T. All Rights Reserved

Scaling VPN routes

- RT-filter between MP-BGP peers for constrained VPN routes exchange
 - Based on <draft-ietf-l3vpn-rt-constrain-02>
 - Advertise import RTs (RR->RR, PE->RR), not all VPN routes
 - Advertise VPN routes on inverse direction of RT advertisement
 - BGP best path selection selects 1 path per NLRI. NLRI: <as#:RT>
 - Applicable to intra-AS and inter-AS (option B, C)

Copyright (c) 2006 AT&T. All Rights Reserved

Security Considerations - v4 and v6

- Alter/disable TTL propagation (core protection RFC 4111) at the PE
 - Make the backbone look like one hop from the outside, Prevent the backbone addresses from being exposed through trace route
 - Prevent TTL expiry packets cause ICMP time exceeded replies to consume linecard CPU
- Using ACL against infrastructure attacks
 - > Control plane protection/policing to protect route processor/routing engine
 - Distributed line-card protection
- QoS pollution control
 - QoS (MPLS EXP) re-coloring to prevent illegitimate traffic from impacting high priority traffic within the backbone
- eBGP security
 - Protect against disruption, redirection of traffic flow
 - Route filtering, dampening, maxas-limit, and MD5
 - Route limit for VPN
 - Control Plane TTL Sanity Check (RFC 3682, GTSM) TTL check on BGP peering packets can effectively block all non-directed BGP spoofing

Security Considerations - v6 Specific

• Routing headers filtering

- Extension Headers (EHs) filtering and limiting to protect network resources
 - > EHs can be manipulated with context causing intensive processing by network elements
 - Header chain can be unlimited (per spec) a large number of EHs can drain the resources of the routers/devices
- Filter main header field including Flow Label

• ICMPv6 filtering

- A large number of functions, message types, and options
- Security considerations
 - Denial of Service attacks
 - Probing
 - Redirection attacks
 - Renumbering attacks
 - Problems due to ICMPv6 transparency
- ICMP filtering using IPv6 ACLs, e.g.
 - > Rate-limit the number of ICMP error messages generated
 - > Re-direct ACL to disable sending redirect packet
- Best practice guidelines for Filtering ICMPv6 Messages:
 - <draft-ietf-v6ops-icmpv6-filtering-bcp-00.txt>

Inter-As IPv6 VPN

Copyright (c) 2006 AT&T. All Rights Reserved

Multicast IPv6 VPN (1)

 MVPNv6 support challenges – still waiting for VPNv4 scalable design to settle in IETF

Work in progress <draft-ietf-l3vpn-2547bis-mcast-01.txt>

Multicast IPv6 VPN (2)

- Follow the similar requirements as for IPv4 MVPN
 - MVPN Requirements: <draft-ietf-I3vpn-ppvpn-mcast-reqts-04>
 - e.g. Avoid sending MVPN traffic to non-receivers

MPLS Multicast Development

Current Issues

- No native MPLS (LDP or RSVP-TE) support for multicast
 - Relying on other tunneling mechanisms
 - Piggybacking MPLS labels distribution on PIM
- IETF recent development for MPLS multicast
 - Building p2mp (Point-to-multipoint) LSP with RSVP and LDP
 - MPLS extension to support upstream labels allocation
 - RSVP-TE and LDP extension to support upstream label distribution

MPLS 2547 VPN Multicast Development (1)

Current Issues - Scalability

Control plane

- Multicast: PE maintain PIM peering with all other PEs which have common VPN(s), vs. Unicast: PE BGP peering with limited number of VPN RRs
- Per VPN PIM peering

≻Data plane

 Multicast VPN States Grow with the number of VPNs vs. Unicast: no VPN states on P and only connected VPN states on each PE

• PIM-SM: # of multicast trees = # of MVPNs

• PIM-SSM: # of multicast trees = # of MVPNs x average # of PE per VPN

> Multicast VPN forwarding

Iimited to PIM based IP/GRE tunnels

MPLS 2547 VPN Multicast Development (2)

- IETF recent development on 2547 MVPN
 - <draft-ietf-I3vpn-ppvpn-mcast-reqts-05.txt>
 - <draft-ietf-I3vpn-2547bis-mcast-01.txt>
 - Routing exchange
 - Using BGP for VPN multicast routing info exchange to reduce control plane overhead
 - Similar approach as 2547 VPN: CE <-> PE and PE<->PE
 - Using route reflection to scale as in Unicast
 - Forwarding state aggregation
 - Inter-AS tunnels, <source AS, MVPN> vs. <source PE, MVPN>
 - Using p2mp LSP hierarchy
 - Forwarding MVPN traffic
 - Using p2mp LSP (RSVP-TE or LDP)

Conclusions

- Where are we with v6?
 - > IPv6 work started in IETF more than 10 years ago
 - > Many networks deployed IPv6 in recent years, more to follow
 - IPv6 VPN deployment is in progress
- Requirements for IPv6 VPN
 - Support all features/capabilities as in IPv4 VPN
 - Ease of migration
- Technologies for IPv6 VPN in MPLS network
 - Same principle as IPv4 VPN
 - MP-BGP extension VPNv6 Address Family
- Challenges
 - Migration toward IPv6 VPN support
 - Network upgrade
 - OSS development is a major task
 - Additional security mitigation for IPv6 and IPv6 VPN
 - Multicast for IPv6 VPN support

MPLSCon 2006 New York City, May 25, 2006

THANK YOU!

luyuanfang@att.com

