

## MPLS based Virtual Private Network Services

#### **An MFA Forum Sponsored Tutorial**

Matt Kolon MFA Forum Ambassador Senior Technical Solutions Manager Juniper Networks

Slide

Copyright © 2006 MFA Forum

## **MPLS VPN Tutorial Agenda**



- Introduction to the MFA Forum
- Introduction to MPLS and MPLS VPNs
  - Defining Layer 2 and 3 VPNs
- Layer 3 MPLS VPN
  - BGP Review
  - RFC 2547bis Key Characteristics
  - BGP/MPLS VPN Architecture Overview
    - VPN Routing and Forwarding (VRF) Tables
    - Overlapping VPNs
    - VPN Route Distribution
    - VPN Packet Forwarding
    - Scaling L3VPNs and Route Reflectors

Slide 2

## **MPLS VPN Tutorial Agenda**



- Layer 2 VPNs
  - IETF PWE3 and L2VPN WG update
  - Encapsulation and Label Stacking
  - Virtual Private Wire Services VPWS
    - Pt-to-pt Ethernet, Pt-to-pt ATM, Pt-to-pt Frame Relay
  - Virtual Private LAN Services VPLS
- Introduction to Multi-Service Interworking
  - Carrier Challenges at the Edge
  - Interworking History and Definition
  - Network and Service Interworking (FRF.5 and FRF.8.1)
  - MPLS FR Alliance Multi-Service Interworking Work Actions

Slide :

Copyright @ 2006 MFA Forum



# Introduction to the MFA Forum

Slide 4

#### **Mission Statement**



The MFA Forum is an international, industry-wide, nonprofit association of telecommunications, networking, and other companies focused on advancing the deployment of multi-vendor, multi-service packet-based networks, associated applications, and interworking solutions.

Slide 5

Copyright © 2006 MFA Forum

#### **MFA Forum**



- Formed in July 2005 by merging the ATM Forum and the MPLS & Frame Relay Alliance
- 39 member companies
- Three primary committees
  - Technical Committee
    - Applications and Deployment Working Group
    - ATM Architecture Working Group
    - ATM Signaling Working Group
    - Interoperability Working Group
    - Interworking and Frame Relay Working Group
  - Marketing Awareness and Education Committee
  - Service Provider Council
- MPLS User Group Enterprises, Carriers

Slide 6

# **Technical Committee Major Work Items**



- MPLS Inter-Carrier Interface
- Packet-Based GMPLS Client to Network Interconnect (CNI)
- ATM and Frame Relay to MPLS Control Plane interworking (in Final Ballot)
- Fault Management Interworking (in Final Ballot)
- ATM, Ethernet, and Frame Relay Interworking over MPLS (in Final Ballot)
- Performance Monitoring Across Multiservice Networks (in Straw Ballot)
- Layer 2 Service Mediation
- AAL1 and AAL2 Voice Trunking over MPLS

Slide 1

Copyright © 2006 MFA Forum

### **MFA Forum**



- Market Awareness & Education
  - Tutorials
    - Introduction to MPLS 1/2 day and full day MPLS Virtual Private Networks 1/2 day and full day MPLS VPN Security 1/2 day Traffic Engineering 1/2 day GMPLS 1/2 day Migrating Legacy Services to MPLS 1/2 day MPLS OAM 1/2 day Voice over MPLS ½ day
    - New tutorials based upon demand
  - Conferences and exhibitions
    - . MFA Forum speaker at almost every MPLS conference globally
  - Website and Newsletter
  - Public message board
- Next meeting: June 27-29 in Vancouver, BC, Canada
- Please join us!
  - Subscribe to information mail list info@mfaforum.org
  - To join the Forum contact Alexa Morris, Executive Director
     E-Mail: amorris@mfaforum.org
     Phone: 510 608-5914

Slide 8









#### **Virtual Private Networks**



- VPN (Virtual Private Network) is simply a way of using a public network for private communications, among a set of users and/or sites
- Remote Access: Most common form of VPN is dial-up remote access to corporate database - for example, road warriors connecting from laptops
- Site-to-Site: Connecting two local networks (may be with authentication and encryption) - for example, a Service Provider connecting two sites of the same company over its shared network

Slide 1

Copyright © 2006 MFA Forum

#### MPLS, VPNs, and Standards MFA FORUM A lot of confusion L2TP Point to multipoint **VPWS** Kompella IP VPNs Layer 2 Lasserre Vkompella **Tunneling** Martini PWE3 Point to point **BGP / MPLS VPNs** Layer 3 RFC 2547 bis PPVPN **IPLS** Copyright © 2006 MFA Forum

#### **VPNs** MFA FORUM Types, Layers, and Implementations **VPN Type Implementation** Layer 1 **Leased Line** TDM/SDH/SONET 2 **Frame Relay DLCI ATM** 2 VC 3 GRE/UTI/L2TPv3 **IP Tunnel** 2 **Ethernet** VLAN / VPWS / VPLS IP 3 RFC2547bis / VR 3 **IP IPsec** Copyright © 2006 MFA Forum







# What are Layer 2, Layer 3 VPNs AFA FORUM

- VPNs based on a Layer 2 (Data Link Layer) technology and managed at that layer are defined as Layer 2 VPNs (MPLS, ATM, Frame Relay)
- VPNs based on tunneling at Layer 3 (Network Layer) are Layer 3 VPNs, (BGP/MPLS, VR, IPSec)

Slide 19







## **MPLS VPN Tutorial Agenda**



#### **Layer 3 MPLS VPN**

- BGP Review
- RFC 2547bis Key Characteristics
- BGP/MPLS VPN Architecture Overview
  - VPN Routing and Forwarding (VRF) Tables
  - Overlapping VPNs
  - VPN Route Distribution
  - VPN Packet Forwarding
  - Scaling L3VPNs and Route Reflectors

Slide 23

Copyright © 2006 MFA Forum

#### What is BGP?



- BGP is an exterior gateway protocol that allows IP routers to exchange network reachability information.
- BGP published as RFC 1105 in 1989 and after several updates, the current version, BGP-4 was published in 1995 as RFC 1771.
- Numerous other RFCs and Internet Drafts focus on various aspects and extensions including multiprotocol extensions, extended communities, carrying label information in BGP, etc

Slide 2

#### IGP vs. EGP



- Interior Gateway Protocols
  - RIP, OSPF, IS-IS
  - Dynamic, some more than others
  - Define the routing needed to pass data <u>within</u> a network
- Exterior Gateway Protocol
  - BGP
  - Less Dynamic than IGPs
  - Defines the routing needed to pass data <u>between</u> networks

Slide 25

Copyright © 2006 MFA Forum

# iBGP - BGP between border routers in the same AS. IBGP - BGP between border routers in the same AS. IBGP - AS 3 Provides a consistent view within the AS of the routes exterior to the AS.









# Virtual Routing and Forwarding (VRF) PE to CE Router Connectivity





 Protocols used between CE and PE routers to populate VRFs with customer routes

- BGP-4
  - useful in stub VPNs and transit VPNs
- RIPv2
- OSPF
- static routing
  - · particularly useful in stub VPNs
- Note:
  - Customer routes need to be advertised between PE routers
  - Customer routes are not leaked into backbone IGP

Slide 3

Copyright © 2006 MFA Forum

# Virtual Routing and Forwarding (VRF) Overlapping VPNs





#### **Examples:**

- Extranet
- VoIP Gateway
- A VPN is a collection of <u>sites</u> sharing a common routing information (routing table)
- A VPN can be viewed as a community of interest (or Closed User Group)

Slide 32

# Virtual Routing and Forwarding (VRF) Overlapping VPNs





#### **Examples:**

- Extranet
- VoIP Gateway
- A site can be part of different VPNs
- A site belonging to different VPNs may or may not be used as a transit point between VPNs
- If two or more VPNs have a common site, address space must be unique among these VPNs

Slide 33

Copyright © 2006 MFA Forum

#### **VRFs and Route Distribution**





- Multiple VRFs are used on PE routers
- The PE learns customer routes from attached CEs
- Customer routes are distributed to other PEs with MP-BGP
- Different IGPs or eBGP supported between PE and CE peers

Slide 34







 How will the PE routers exchange information about VPN customers and VPN routes between themselves?

Option #1: PE routers run a different routing algorithm for each VPN

- <u>Scalability problems</u> in networks with a large number of VPNs
- Difficult to support overlapping VPNs

Slide 3

Copyright © 2006 MFA Forum



 How will the PE routers exchange information about VPN customers and VPN routes between themselves?

Option #2: BGP/MPLS IP VPN - PE routers run a single routing protocol to exchange all VPN routes

 Problem: <u>Non-unique IP addresses</u> of VPN customers. BGP always propagates one route per destination not allowing address overlap.

Slide 38

#### **VPN Route Distribution**

**VPN-IPv4** Addresses



#### VPN-IPv4 Address

VPN-IPv4 is a globally unique, 96bit routing prefix

#### **Route Distinguisher (RD)**

**IPv4 Address** 

64 bits

Creates a VPN-IPv4 address that is globally unique, RD is configured in the PE for each VRF, RD may or may not be related to a site or a VPN

32 bits IP subnets advertised by the CE routers to the PE routers

Slide 39

Copyright © 2006 MFA Forum

#### **VPN Route Distribution**

**VPN-IPv4** Addresses



Route Distinguisher format

| 00 | 00 | ASN | nn |
|----|----|-----|----|
|    |    |     |    |

- ASN:nn
  - Autonomous System Number (ASN) assigned by Internet Assigned Number Authority (IANA)

| ı |       |                       |    |
|---|-------|-----------------------|----|
|   | 00 01 | IP address            | nn |
| ı |       | and the second second |    |

- IP-address:nn
  - use only if the MPLS/VPN network uses a private AS number

| 00 02 BGP-AS4 n | n |
|-----------------|---|
|-----------------|---|

- BGP-AS4:nn
  - 4-byte Autonomous System Number (BGP-AS4)

Slide 40

#### **VPN Route Distribution**

**BGP** with Multiprotocol Extensions



- How are 96-bit VPN-IPv4 routes exchanged between PE routers?
- BGP with Multiprotocol Extensions (MP-BGP)
  was designed to carry such routing
  information between peer routers (PE)
  - propagates <u>VPN-IPv4</u> addresses
  - carries additional BGP route attributes (e.g. <u>route</u> <u>target</u>) called extended communities

Slide 4

Copyright © 2006 MFA Forum

## VPN Route Distribution

**BGP** with Multiprotocol Extensions



- A BGP route is described by
  - standard BGP Communities attributes (e.g. Local Preference, MED, Next-hop, AS\_PATH, Standard Community, etc.)
  - extended BGP Communities attributes
- Extended Communities
  - Route Target (RT)
    - · identifies the set of sites the route has to be advertised to
  - Route Origin (RO)/Site of Origin
    - · identifies the originating site
    - to prevent routing loops with multi-homed customer sites

Slide 42





# **MP-BGP** Route Distribution Summary



- VPN Routing and Forwarding (VRF) Table
  - Multiple routing tables (VRFs) are used on PEs
    - VPNs are isolated
- Customer addresses can overlap
  - Need for unique VPN route prefix
  - PE routers use MP-BGP to distribute VPN routes to each other
  - For security and scalability, MP-BGP only propagates information about a VPN to other routers that have interfaces with the same Route Target value.

MP-BGP = BGP with Multiprotocol Extensions

Slide 4

Copyright © 2006 MFA Forum











## **Scaling BGP/MPLS VPNs**



- Scalability of BGP/MPLS VPNs
  - Expanding the MPLS core network
    - without impact on the VPN services, e.g. adding P routers (LSRs), new or faster links
  - Label stacking
    - allows reducing the number of LSPs in the network core and avoiding LSP exhaustion
  - VPN Route Distribution
    - Route Reflectors

Slide 5

Copyright © 2006 MFA Forum

# Scaling BGP/MPLS VPNs





- BGP Route Reflectors
  - Existing BGP technique, can be used to scale VPN route distribution
    - PEs don't need full mesh of BGP connections, only connect to RRs
    - By using multiple RRs, no one box needs to have all VPN routes
  - Each edge router needs only the information for the VPNs it supports
    - directly connected VPNs

Slide 52

#### **Reference Material**



#### **Books:**

- "BGP4 Inter-Domain Routing in the Internet" by John Stewart ISBN 0-201-37951-1
- "Internet Routing Architectures" by Bassam Halabi ISBN 1-56205-652-2
- "Interconnections: Bridges and Routers" by Radia Perlman ISBN
- "Internetworking with TCP/IP Volume 1" by Douglas Comer ISBN 0-13-468505-9
- "TCP/IP Network Administration Second Edition" by Craig Hunt ISBN 1-56592-322-7
- "Routing in the Internet" by Christian Huitema ISBN 0-13-132192-7

#### **Mail Lists:**

SSR mailinglist - majordomo@cabletron.com GateD mailinglists - See www.gated.org

North American Network Operators Group (NANOG) mailist - See www.merit.org

Slide 53

Copyright @ 2006 MFA Forum

# Reference Material Request For Comments - RFCs



08/98 - RFC2385PS "Protection of BGP Sessions via the TCP MD5 Signature Option" 02/98 - RFC 2283PS "Multiprotocol Extensions for BGP-4" 01/97 - RFC 2042 "Registering New BGP Attribute Types" 08/96 - RFC 1998 "An Application of the BGP Community Attribute in Multi-home Routing" 08/96 - RFC 1997 "BGP Communities Attribute" 06/96 - RFC 1966 "BGP Route Reflection An alternative to full mesh" 06/96 - RFC 1965 "Autonomous System Confederations for BGP" 10/95 - RFC 1863 "A BGP/IDRP Route Server alternative to a full mesh routing" "CIDR and Classful Routing" 08/95 - RFC 1817 "BGP-4 Protocol Analysis" 03/95 - RFC 1774 03/95 - RFC 1773 "Experience with the BGP-4 protocol" "Application of the Border Gateway Protocol in the Internet" 03/95 - RFC 1772 03/95 - RFC 1771 "A Border Gateway Protocol 4 (BGP-4) "BGP4/IDRP for IP---OSPF Interaction" 12/94 - RFC 1745 07/94 - RFC 1657 "Definitions of Managed Objects for BGP-4 using SMIv2" 09/93 - RFC 1520 "Exchanging Routing Information Across Provider Boundaries in CIDR" 09/93 - RFC 1519 "CIDR; an Address Assignment and Aggregation Strategy" 09/93 - RFC 1518 "An Architecture for IP Address Allocation with CIDR"

Slide 54

#### **Reference Material**

#### **Internet Drafts**



- 08/98 "LDP Specification"
- 08/98 "Border Gateway Multicast Protocol (BGMP): Protocol Specification"
- 08/98 "A Framework for Inter-Domain Route Aggregation"
- 08/98 "Routing Policy Configuration Language (RPCL)"
- 08/98 "Carrying Label Information in BGP-4"
- 08/98 "Capabilities Negotiation with BGP-4"
- 08/98 "BGP Security Analysis"
- 08/98 "A Border Gateway Protocol 4 (BGP-4)"
- 07/98 "Using RPSL in Practice"
- 07/98 "Multiprotocol Label Switching Architecture"
- 06/98 "NHRP for Destinations off the NBMA Subnetwork"
- 05/98 "BGP Route Flap Damping"
- 04/98 "BGP-4 Capabilities Negotiation for BGP Multiprotocol Extensions"
- 03/98 "To Be Multihomed: Requirements & Definitions"
- 03/98 "BGP-4 over ATM and Proxy PAR"
- 02/98 "Use of BGP-4 Multiprotocol Extensions for IPv6 Inter-Domain Routing"
- 02/98 "Carrying Label Information in BGP-4"
- 01/98 "DNS-base NLRI origin AS verification in BGP"

Slide 55

Copyright © 2006 MFA Forum



#### **Section 3**

## **Layer 2 VPNs**

Slide 56

## **MPLS VPN Tutorial Agenda**



#### **Layer 2 VPNs**

- IETF PWE3 and L2VPN WG update
- Encapsulation and Label Stacking
- Virtual Private Wire Services VPWS
  - Pt-to-pt Ethernet, Pt-to-pt ATM, Pt-to-pt Frame Relay
- Virtual Private LAN Services VPLS

Slide 5

Copyright © 2006 MFA Forum

## **MPLS L2 VPN Market Drivers**

What can we conclude?



- Layer 3 IP is not the only traffic
  - Still a lot of legacy SNA, IPX etc
  - Large enterprises have legacy protocols
- Layer 3 IP VPNs are not the whole answer
  - IP VPNs cannot handle legacy traffic
- Layer 2 legacy traffic widely deployed

Carriers need to support Layer 2 and Layer 3 VPNs

Slide 58

## **MPLS Layer 2 VPNs**



- Point-to-point layer 2 solutions
  - Virtual Private Wire Services VPWS
  - Similar to ATM / FR services, uses tunnels and connections (LSPs)
  - Customer gets connectivity only from provider
  - Ongoing work to encapsulate Ethernet, ATM, FR, TDM, SONET, etc
- Multi-point layer 2 solutions
  - Virtual Private LAN Services VPLS
  - Virtual Private LAN Services aka Transparent LAN Service (TLS)
  - Ethernet Metro VLANs / TLS over MPLS
  - Independent of underlying core transport
  - All drafts "currently" support PWE3 (Martini) Ethernet encapsulation
  - Differences in drafts for discovery and signaling

Slide 59

Copyright L \_\_\_\_ .....







## **LDP - Label Mapping Message**



| Label Mapping                | Message Length |  |  |
|------------------------------|----------------|--|--|
| Message ID                   |                |  |  |
| FEC TLV                      |                |  |  |
| Label                        | TLV            |  |  |
| Label Request Message ID TLV |                |  |  |
| LSPID TLV (optional)         |                |  |  |
| Traffic TLV (optional)       |                |  |  |

#### **New VC FEC Element Defined**



Copyright © 2006 MFA Forum

| VC TLV               | C | VC Type | VC Info Length |  |
|----------------------|---|---------|----------------|--|
| Group ID             |   |         |                |  |
| VC ID                |   |         |                |  |
| Interface Parameters |   |         |                |  |

#### Virtual Circuit FEC Element

- C Control Word present
- VC Type FR, ATM, Ethernet, HDLC, PPP, ATM cell
- VC Info Length length of VCID field
- Group ID user configured group of VCs representing port or tunnel index
- VC ID used with VC type to identify unique VC
- Interface Parameters Specific I/O parameters

Slide 64

# Layer 2 Encapsulation Ongoing work in PWE3



- RFC 3916: Requirements for PWE3
  - "This document describes base requirements for the Pseudo-Wire Emulation Edge to Edge Working Group (PWE3 WG). It provides guidelines for other working group documents that will define mechanisms for providing pseudo-wire emulation of Ethernet, ATM, Frame Relay."
- RFC 3985: PWE3 Architecture
  - "This document describes an architecture for Pseudo Wire Emulation Edge-to-Edge (PWE3). It discusses the emulation of services (such as Frame Relay, ATM, Ethernet TDM and SONET/SDH) over packet switched networks (PSNs) using IP or MPLS. It presents the architectural framework for pseudo wires (PWs), defines terminology, specifies the various protocol elements and their functions."

Slide 6

Copyright © 2006 MFA Forum

# Layer 2 Encapsulation PWE3 WG documents (original Martini work)



- Pseudowire Set-up and Maintenance using LDP
  - draft-ietf-pwe3-control-protocol-17.txt June 05
- ATM AAL5 and ATM cell
  - draft-ietf-pwe3-atm-encap-10.txt Sept 05
- Frame Relay
  - draft-ietf-pwe3-frame-relay-06.txt June 05
- Ethernet / 802.1q VLAN
  - draft-ietf-pwe3-ethernet-encap-11.txt June 05
- PPP/HDLC
  - draft-martini-ppp-hdlc-encap-mpls-00.txt

Slide 6













#### **MPLS PWE3 FR Encapsulation**

draft-ietf-pwe3-frame-relay-06.txt



- Main Functions: FR over Pseudo Wire FRoPW
  - Encapsulation of FR specific information in a suitable FRoPW packet (ingress function)
  - Transfer of a FRoPW packet through IP / MPLS network
  - Extraction of FR specific information from a FRoPW packet (egress function)
  - Generation of native FR frames at egress
  - Other operations to support FR services

Slide 7

Copyright © 2006 MFA Forum

#### **MPLS PWE3 FR Encapsulation** MFA FORUM draft-ietf-pwe3-frame-relay-06.txt **End-to-end FR VCs** Pair of Uni-directional One One PW LSPs **Bi-directional Bi-directional** FR VC FR VC CE-1 CE-2 PE<sub>1</sub> PE2 **Tunnel LSP** Pseudo Wire Emulated Service - Two Mapping modes defined between FR VCs and FR PWs One-to-one mapping One FR VC mapped to a pair of unidirectional PWs Copyright © 2006 MFA Forum Slide 74





### **MPLS VPN Tutorial Agenda**



#### **Layer 2 VPNs**

- IETF PWE3 and L2VPN WG update
- Encapsulation and Label Stacking
- Virtual Private Wire Services VPWS
  - Pt-to-pt Ethernet, Pt-to-pt ATM, Pt-to-pt Frame Relay



Virtual Private LAN Services – VPLS

Slide 7

Copyright © 2006 MFA Forum

## **IETF Layer 2 VPNs**



#### draft-ietf-l2vpn-requirements-01.txt – Nov 05

- Provides requirements for Layer 2 Provider Provisioned Virtual Private Networks (L2VPNs) Provides taxonomy and terminology and states generic and general services requirements. It covers point-to-point VPNs referred to as Virtual Provate Wire Services (VPWS), as well as multipoint-tomultipoint VPNs as known as Virtual Private LAN services (VPLS)
- This document provides a framework for Layer 2 Provider Provisioned Virtual Private Networks (L2VPNs). This framework is intended to aid in standardizing protocols and mechanisms to support interoperable L2VPNs.

Slide 78







#### **Virtual Private LAN Services**





- Updated November 2005
- Defines an Ethernet (IEEE 802.1D) learning bridge model over MPLS Martini <u>Ethernet</u> circuits
- Defines the LER (PE) function for an MPLS VPLS network
- Creates a layer 2 broadcast domain for a closed group of users
- MAC address learning and aging on a per LSP basis
- Packet replication across LSPs for multicast, broadcast, and unknown unicast traffic
- Includes Hierarchical VPLS
  - formerly draft-khandekar-ppvpn-hvpls-mpls-00.txt

Slide 82







**VPLS** Code



- VPLS Forwarding
  - Learns MAC addresses per pseudo-wire (VC LSP)
  - Forwarding based on MAC addresses
  - Replicates multicast & broadcast frames
  - Floods unknown frames
  - Split-horizon for loop prevention
- VPLS Signaling
  - Establishes pseudo-wires per VPLS between relevant PEs
- VPLS Discovery (Manual, LDP, BGP, DNS)

Slide 8

## **Bridging Code**



- Standard IEEE 802.1D code
  - Used to interface with customer facing ports
  - Might run STP with CEs
  - Used to interface with VPLS
  - Might run STP between PEs

Slide 8

Copyright © 2006 MFA Forum

# VPLS Scalability





- Number of MAC Addresses
- Number of replications
- Number of LSPs
- Number of VPLS instances
- Number of LDP peers
- Number of PEs

Slide 8

















## **VPLS Scalability**

**FIB Size** 



- VPLS FIB size depends on the type of Service Offering:
  - Multi-protocol Inter-connect service
    - Mimics the DSL Tariff Model
    - Customers are charged per site per block of MAC addresses
  - Router Inter-connect
    - One MAC address per site
- Same Network Design principles apply for
  - MAC FIB Size of VPLS Service and,
  - Route Table Size of Virtual Private Routed Network (VPRN) Service

Slide 97

Copyright © 2006 MFA Forum

## **MPLS VPNs Summary**



- Layer 2 versus Layer 3
  - Apples and Oranges
- Layer 3 MPLS VPNs
  - Deployed with Internet Draft 2547bis
- Layer 2 MPLS VPNs
  - Lots of Interest from Carriers and Vendors
  - Many new drafts lots of consolidation
  - We are in "concept" stage
  - Solutions available

Slide 98



#### **Section 4**

#### **Introduction to Multi-Service Interworking**

Slide 9

Copyright © 2006 MFA Forum

## Why Interwork?



- Carriers want a common edge infrastructure to support and "Interwork" with legacy and new services
- Carriers want to support all legacy transports technologies and services
- Carriers are planning to converge on an IP / MPLS core
- Carriers want to seamlessly introduce Metro Ethernet services and IP VPNs

Slide 10

# Interworking History



- The Frame Relay Forum defined the <u>Network</u> <u>Interworking</u> function between Frame Relay and ATM in the FRF.5 document finalized in1994.
- The Frame Relay Forum defined the <u>Service</u> <u>interworking</u> function between Frame Relay and ATM in the FRF.8.1 document finalized in 2000.
- Why define FR and ATM interworking?
  - ATM cores with FR access services deployed
  - ATM and Frame Relay circuits are point-to-point
  - Both data links have services that are somewhat similar in nature even though the signaling is different

Slide 10

Copyright © 2006 MFA Forum

#### **InterWorking Function - IWF** MFA **FORUM Network vs Service IWF** Service Interworking **Network Interworking** Frame Relay Service Frame Relay Service - FRS Frame Relay Service - FRS ATM **Emulated FR Service** Translated FR to ATM Service Network Interworking is used when one Service Interworking is required to protocol is "tunneled" across another "translate" one protocol to another protocol - used between two unlike "intermediary" network / protocol protocols The Network Interworking function "terminates" and "encapsulates" the The Service Interworking function protocol over a Pt-to-Pt connection "translates" the control protocol information transparently by an interworking function (IWF) Copyright © 2006 MFA Forum





#### Why not continue with ATM IW?



- ATM is optimized for voice transport cell overhead etc
- Cells are simply fixed length packets and can be carried unchanged across an MPLS network
- Packets are not cells and must be adapted to be carried across ATM
- MPLS is optimized for packet transport
- Carriers want to converge on IP/MPLS cores supporting both new and legacy services

Slide 10

Copyright © 2006 MFA Forum

#### Why Migrate to MPLS?



- MPLS allows service providers to converge onto a single infrastructure while offering existing services
- MPLS enables new service offerings and simplifies service provisioning
- MPLS supports rapid growth in IP applications and services
- MPLS allows the integration of services management into a common OSS strategy
- MPLS supports the integration of packet technologies and optical cores

Slide 106









### For More Information. . .



- http://www.mfaforum.org
- http://www.ietf.org
- http://www.itu.int
- <a href="http://www.mplsrc.com">http://www.mplsrc.com</a>

For questions, utilize the MFA Forum Message Board Website: http://www.mfaforum.org/board/

Slide 11

Copyright @ 2006 MFA Forum



Thank you for attending the

MPLS based Virtual Private Network Services Tutorial

Slide 112