Multicast Support for VPLS

Marc Lasserre

Default VPLS
Multicast Processing
VPLS Ingress Replication

- Ingress replication for
 - Broadcast
 - Unknown
 - Multicast

- Original design goals
 - Keep the VPLS core stateless
 - No need to run a multicast routing protocol
 - No need to build multicast trees
 - No need to maintain (S,G) state
 - No congruency issues
 - Between unicast & multicast paths

VPLS Multicast

Basic VPLS

- BUM traffic replicated by ingress PE to all PEs serving corresp. VPLS domain

- Without snooping, multicast traffic sent to non listeners

- With AC snooping, multicast traffic sent to listeners only
VPLS Multicast

Hierarchical VPLS

- With HVPLS, replication distributed between PEs and MTUs
 - MTUs replicate traffic towards their ACs
 - PEs replicate traffic across VPLS PWs and their locally attached MTUs

Optimizing VPLS Multicast
Multicast Optimizations

- Traffic Delivery
 - To receivers only
 - Tracking Joins/Prunes
- Bandwidth Usage
 - Minimize number of copies

Traffic Delivery Optimization

- IGMP/PIM snooping
 - Snooping on ACs not an issue
 - Amount of (S,G) state to be maintained is bounded
 - Snooping on core PWs can lead to a large amount of state to be maintained per PE
 - IGMP Snooping
 - Defined in draft-ietf-magma-snoop
 - PIM Snooping
 - Defined in draft-hemige-serbest-l2vpn-vpls-pim-snooping
Bandwidth Optimization

- So far, replication within metro networks has not been an issue
 - Simple topologies (rings or very few P routers between PEs)
 - Average number of sites per VPN typically small (between 5 and 20)
 - Hierarchical VPLS constructs distribute replication across multiple nodes
- With more complex topologies, use of p2mp LSPs leads to better bandwidth utilization

Multicast Optimizations Dependencies

- The amount of multicast traffic dictates:
 - Content location
 - Centralized vs distributed content
 - Core bandwidth usage
 - Snooping location
 - PE-rs
 - MTU-s
 - Access (e.g. DSLAM)
- Multicast optimizations depend upon network topology
 - Number of hops between source and terminating devices
Multicast Transport LSPs

- RSVP-TE p2mp extensions
 - draft-ietf-mpls-rsvp-te-p2mp
- LDP p2mp extensions
 - draft-minei-mpls-ldp-p2mp
 - draft-minei-wijnands-mpls-ldp-p2mp
 - Includes capabilities to set up p2mp & mp2mp trees
 - draft-boddapati-mpls-pim-ssm-ldp-p2mp
 - Uses a combination of PIM-SSM & LDP
 - PIM-SSM to build mcast trees
 - LDP to distribute labels
- mLDP over mRSVP_TE
 - draft-yasukawa-mpls-ldp-mcast-over-p2mp-lsps

Multicast & QoS

- Multicast applications often have strict QoS requirements
 - E.g. Broadcast Video, Video Conferencing
- RSVP-TE provides
 - Explicit path control
 - Resource reservation
 - Protection
- If mLDP were to be used, it would have to be carried over mRSVP-TE to meet QoS reqs
Multicast Options

- Trade-off between:
 - State maintained in the core
 - Optimization of bandwidth usage
 - Optimality of multicast routes
- L3 Multicast solutions aim to optimize b/w usage
 - draft-rosen-vpn-mcast
- L2 Multicast solutions aim to keep the core stateless
 - draft-hemige-serbest-l2vpn-vpls-pim-snooping
 - draft-ietf-magma-snoop
- Hybrid model
 - draft-ietf-l2vpn-vpls-mcast

VPLS Multicast Drivers

- Broadcast video/radio delivery
 - Carrier based services
 - Broadcast TV, HDTV
- Dedicated multicast streams
 - Business based services
 - Customer video feeds
 - E.g. Bank video advertisements in branch offices
 - Financial information
 - E.g. Reuters, Tibco
 - Video conferencing
 - E.g. NetMeeting
VPLS Multicast Options

Broadcast Trees

<table>
<thead>
<tr>
<th>Shared Broadcast Tree</th>
<th>Dedicated Broadcast Tree</th>
</tr>
</thead>
<tbody>
<tr>
<td>- One broadcast tree across VPLS instances</td>
<td>- One broadcast tree per VPLS instance</td>
</tr>
<tr>
<td>- Rooted at each VPLS PE or mp2mp tree (shared tree)</td>
<td>- Rooted at each VSI</td>
</tr>
<tr>
<td>- Used to carry all customers’ bcast & mcast traffic</td>
<td>- Used to carry one customer’s bcast & mcast traffic</td>
</tr>
<tr>
<td>- Applicable to both L2 bcast/mcast and L3 mcast</td>
<td>- Applicable to both L2 bcast/mcast and L3 mcast</td>
</tr>
<tr>
<td>- Minimizes amount of multicast state in the core</td>
<td>- Minimizes amount of multicast state in the core</td>
</tr>
<tr>
<td>- VPLS/VC agnostic</td>
<td>- VPLS/VC agnostic</td>
</tr>
<tr>
<td>- Requires support of <code>draft-ietf-mpls-rsvp-te-p2mp</code></td>
<td>- Requires support of <code>draft-ietf-mpls-rsvp-te-p2mp</code></td>
</tr>
</tbody>
</table>

Suited for residential Broadcast Video/Radio delivery

Suited for Business Broadcast Video delivery
Multicast Trees

Dedicated Multicast Trees
- Several trees per VPLS instance
 - Rooted at each source
- Used to carry efficiently customer’s specific mcast traffic
- Applicable to IP mcast only
- Requires support of `draft-ietf-mpls-rsvp-te-p2mp`
- Requires a discovery procedure of multicast membership in core
 - To map (S,G) to correct multicast tree

Aggregate Multicast Trees
- Use of p2mp trees to a defined set of PEs across VPLS instances
- Requires label coordination (upstream allocation)
 - Per mcast group VC label for demultiplexing
- Only applicable to IP traffic
- Requires a discovery procedure of multicast membership in core
 - PIM/IGMP snooping
 - “signaling” protocol to advertise membership (LDP or BGP)

Suites to business customers
- with multiple multicast streams with high b/w requirements

Suites to business customers that need to exchange multicast streams

Discovery Protocol for Multicast Trees

Several options available
- Use of IGMP/PIM snooping on core PWs
- Use of LDP extensions to carry mcast membership information
 - `draft-giu-serbest-l2vpn-vpls-mcast-ldp`
- Use of BGP or PIM as defined in
 - `draft-ietf-l2vpn-vpls-mcast`
VPLS Dataplane Changes

- Use of default p2mp tree instead of ingress replication for:
 - All customer broadcast and multicast data traffic
 - Customer broadcast & mcast control traffic still ingress replicated
- Multicast trees
 - Use of multicast FECs to map customer mcast traffic to appropriate multicast trees
- Aggregate multicast trees
 - Encoding of mcast VC label

VPLS Control Plane Changes

- Broadcast Tree requirements
 - IGMP/PIM snooping on ACs
 - RSVP-TE(/mLDP) multicast extensions
- Add’l requirements for Multicast Trees
 - IGMP/PIM snooping on PWEs for multicast trees
 or
 - BGP/PIM/LDP mcast state signaling over PWEs
 - PIM support in Ps
Conclusion

- Various degrees of complexity to optimize bandwidth usage
 - From simple broadcast trees
 - To more complex multicast trees
- Broadcast Trees require minor extensions to VPLS and suffice for main applications
- Will the extra b/w savings from multicast trees outweigh operational complexity?

Q & A