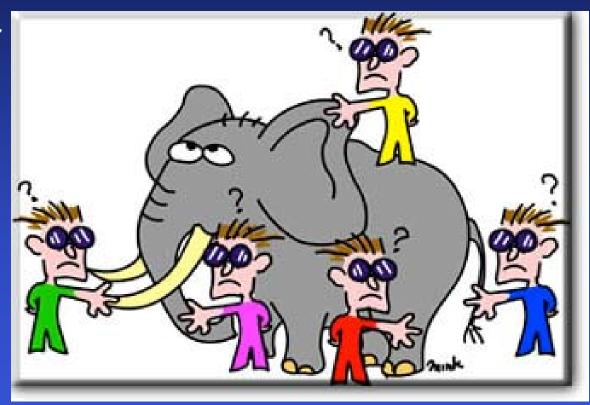
The Successful Deployment of VoIP

Dr. Jim Metzler
Ashton, Metzler & Associates
239.395.3152

jim@ashtonmetzler.com www.ashtonmetzler.com


Agenda

- 4 What is VoIP?
- 4 VoIP: Drivers and Inhibitors
- 4 What are end users saying about VoIP Deployment?
- 4 What are Vendors Saying about the VoIP Business Case?

What is VoIP?

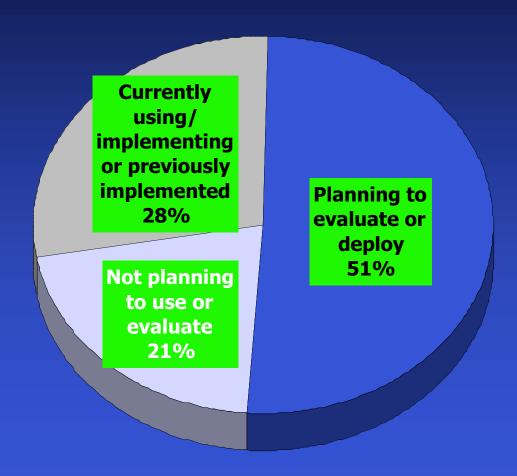
- 4 Voice that is transmitted over IP and some point in the network...
 - Very popular
 - Very broad
 - Very imprecise
- 4 Digging deeper...

Graphic source: http://www.pixelmonger.com/art_flavors.html

Definitions

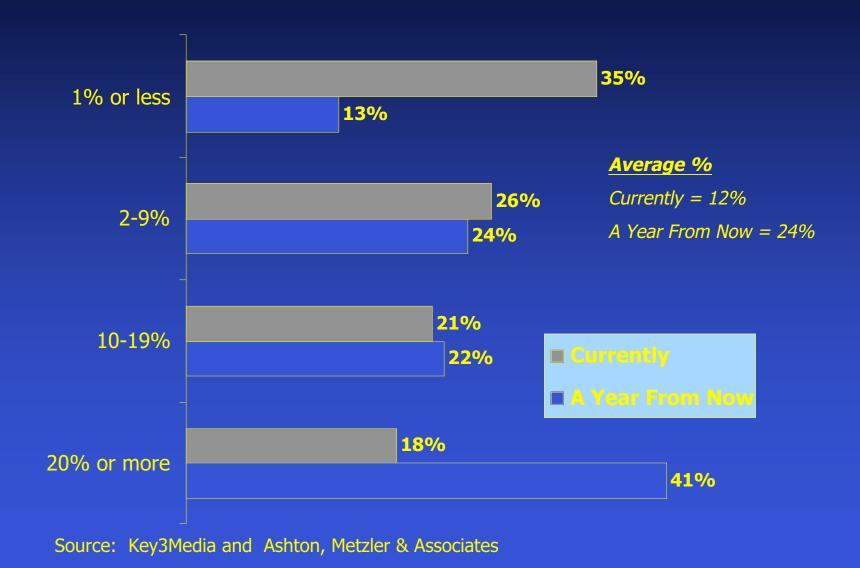
- Voice over IP (VoIP) refers to <u>carrying voice</u> over a presumable low cost IP network. This IP network could be:
 - The company's private IP network
 - **The Internet**
 - A single service provider's IP network
- 4 Companies choosing to deploy VoIP are choosing IP over other transmission technologies, such as circuit switching, TDM, Frame Relay, and ATM
- 4 The key design issues here are high availability and low predictable delay

Definitions

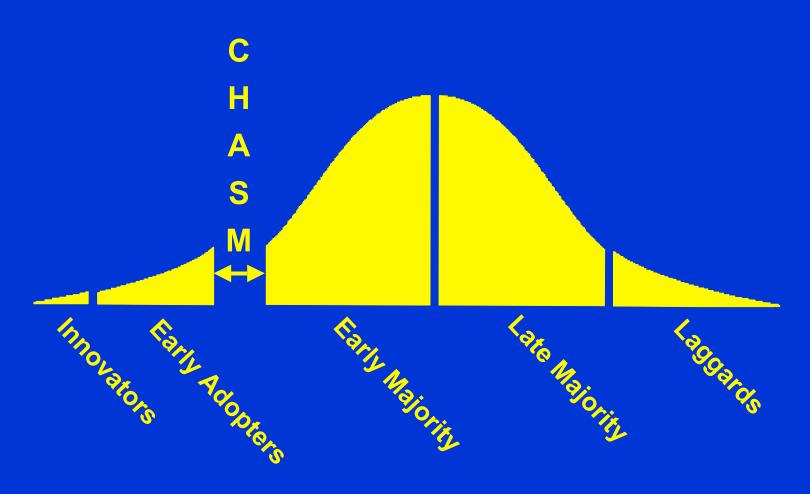

- 4 IP Telephony refers to the provisioning of voice functionality using primarily IP based technologies
- 4 The phrase "voice functionality" refers to functions such as:
 - Call set up across potentially disparate networks; i.e., the internet and the PSTN
 - Support for traditional voice features, such as three way calling and call forwarding
 - The support for a growing array of applications, such as unified messaging

Agenda

- 4 What is VoIP?
- 4 VoIP: Drivers and Inhibitors
- 4 What are end users saying about VoIP Deployment?
- 4 What are Vendors Saying about the VoIP Business Case?

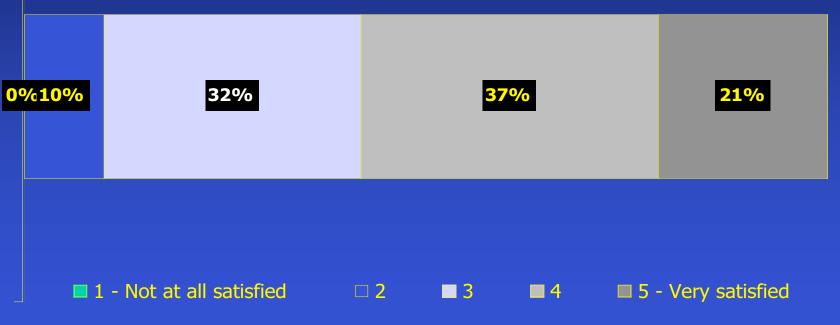


Use of VoIP



Source: Key3Media and Ashton, Metzler & Associates & Key3Media

Amount of Voice Traffic Carried Using VoIP by Current VoIP Users – Currently vs. A Year From Now



Geoffrey Moore's Technology Adoption Life Cycle

Satisfaction With VoIP Deployments Made

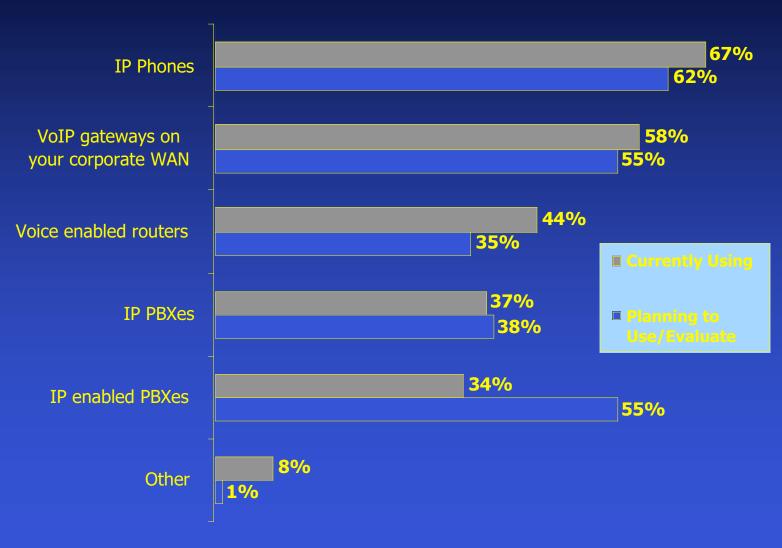
In the survey, of companies that are currently using VoIP, 58% are satisfied with the VoIP deployments made. None were "not at all satisfied".

Source: Key3Media and Ashton, Metzler & Associates & Key3Media

The Primary Benefit to Date of Deploying VolP

4	Cheaper calls between company sites	16%
4	VoIP systems cheaper to administer	16%
4	Easier to deploy new integrated apps	11%
4	Able to deploy voice functionality	
	(i.e., ACD, three way calling) to	
	offices that didn't have it	11%
4	Cheaper international calls	10%
4	Significant drop in the cost of M/A/C	8%

Source: Ashton, Metzler & Associates and Key3Media

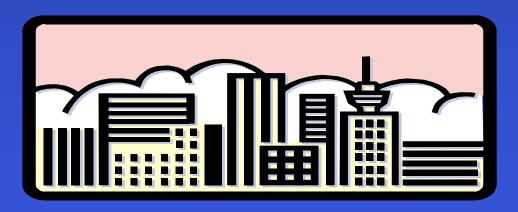

The Primary Drawback to Date of Deploying VolP

4	Deployment was more difficult	
	than anticipated	37%
4	Users complain about voice quality	16%
4	The VoIP system is more difficult to manage	
	than anticipated	8%
4	Our primary vendor made false claims	6%
4	Have not been able to decrease	
	the network staff	6%

Source: Ashton, Metzler & Associates and Key3Media

VoIP Systems Deployed/Planned

Source: Key3Media and Ashton, Metzler & Associates


Agenda

- 4 What is VoIP?
- 4 VoIP: Drivers and Inhibitors
- 4 What are end users saying about VoIP Deployment?
- 4 What are Vendors Saying about the VoIP Business Case?

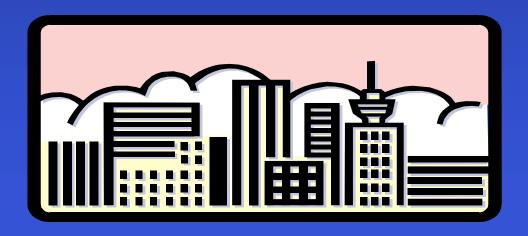
What End Users are Saying about VolP

- 4 A Tale of Two Companies:
 - A company in the Food and Beverage (The Food Company) industry that is architecting their network and their IT organization to be able to support VoIP
 - A Professional Services Firm (The Professional Firm) that is at the testing/piloting stage

- 4 The integration of IP Telephony will be a long journey
- 4 The issues to be faced are multifaceted
- 4 In the beginning technology issues will dominate
- 4 Later success will depend on cultural and organizational evolution and adaptation

- 4 Traditional one server (PBX) per physical location. However, new product directions no longer require one server per location. Hence, a new equipment deployment strategy should be developed before any additional major purchases.
- 4 Not all industry standards are fully implemented and available.
- 4 Successful implementation of strategic products not possible without MPLS and fully mature QOS enabled WAN's and LAN's.
- 4 Telephony and other application/services integration must be addressed.

- 4 SIP (Session Initiation Protocol)
 - Has powerful momentum in the marketplace.
 - SIP should result in completely non-proprietary IP telephony devices, which should result in a major cost reduction in phone sets
- 4 IEEE power delivery over Ethernet/CAT 5
 - The standards debate is now over
 - This will solve power delivery issues with new Access Points, IP Telephones, and other IP appliance type devices
 - Products should appear in market very soon
- 4 Bottom line: The Food Company will wait for SIP and power over Ethernet before making major purchases.


- 4 Latency and Jitter
 - Only cost effectively controllable in data networks with MPLS and QOS
 - QOS must be in place on LAN's as well as WAN's
- 4 Scope of IP Telephony
 - Les not just about "hello" or voice mail any more
 - Multi-disciplinary internal resource skill center must be developed
 - Long term application integration business requirements must be defined and understood before technology/products can be selected

The Food Company Intends to

- 4 Continue to avoid new purchases, upgrades, or replacement of telephony devices until:
 - 1.SIP and Power over Ethernet can be deployed
 - 2. Future business requirements are better understood
 - 3.A thoughtful new device deployment paradigm is agreed upon
 - 4.Adequate testing and piloting has been conducted

What End Users are Saying about VolP

- 4 A Tale of Two Companies:
 - A company in the Food and Beverage industry that is architecting their network and their IT organization to be able to support VoIP
 - A Professional Services Firm that is at the testing/piloting stage

What is Motivating The Professional Firm

- 4 Lower the cost of making a phone call
 - Toll Bypass.
 - 23 voice calls on a T1 but 60+ voice calls in a VoIP T1 (assuming G.729).
 - Access Convergence
 - Deliver all traffic via IP and carrier provides PSTN gateways and DSP resources.
 - Replace PBXs and Messaging systems with pure IP Voice Servers.
 - PBX/telephone equipment and operating savings.
- 4 Support New Applications
 - No longer cost prohibitive to introduce voice based applications.

Requirements, as Seen by The Professional Firm

- 4 A data network that meets the key performance metrics for VoIP - Latency, Jitter, Packet Loss and Availability
- 4 Stable managed network
 - Change management system
 - NOC Monitors network 7 x 24
 - SLAs in place with suppliers
- 4 Data Infrastructure Audit
 - Routers & Switches that support VoIP
 - Support policing, QoS (prioritization), and queuing.
 - Redundancy & Survivability
 - Dual fiber runs between routers and switches
 - Varying levels of redundancy based on office size
 - UPS's 30 minutes at full load
 - ISDN Back-Up for majority of sites

Requirements, as Seen by The Professional Firm

- 4 Capacity Bandwidth available per path on the data network
 - Utilization running at 60 to 65%
- 4 Voice Infrastructure Audit of Switches
 - IP enabling the PBX's
- 4 Detailed understanding of the voice traffic
 - Identify per site calling patterns and usage
 - Calculate IP bandwidth requirements
- 4 Assess the current cost of the data and voice infrastructures
- 4 Very Extensive Testing

Requirements, as Seen by The Professional Firm

4 Support

Data and voice support within IT.

4 Regulatory Environment

Identification of any legal or regulatory issues; i.e.,
 ADA, E911

4 RoadMap

- Close any metrics gaps, increase capacity, upgrade infrastructure, implement network management
- Approach to prioritizing Voice traffic on the network
- Determine where voice is packetized router or PBX

The Professional Firm: Lessons Learned

4 Know your infrastructure

- Technology, Utilization, Costs, Contracts, etc.
- Data network must be ready for VoIP

4 Don't work in a vacuum

New applications added to the network may seriously impact VoIP.

4 TEST, TEST, TEST AND TEST AGAIN

- Do Not Assume; test everything
- Involve others in the testing especially users.

4 Support Model

- Voice operations and design must be part of IT.
- If it isn't, do it before implementing VoIP not during or after.
- Start training data and voice staff now.

Agenda

- 4 What is VoIP?
- 4 VoIP: Drivers and Inhibitors
- 4 What are end users saying about VoIP Deployment?
- 4 What are Vendors Saying about the VoIP Business Case?

Landscape of Enterprise Communications

- 4 Business will not buy
 - Convergence
 - ι IP
 - Broadband
- 4 Business will buy value:
 - to save money
 - to be more efficient, change the way they work
 - to increase customer loyalty and retention
 - to increase revenue

Market Realities

- 4 Networking and location transparency are key drivers for change
- 4 Employee productivity and customer satisfaction contribute to the business case for convergence
- 4 Vendors should take an evolutionary rather that revolutionary approach to voice and data convergence
- 4 A converged PBX should offer a full suite of valueadded applications, not just voice messaging or unified messaging
- 4 Vendors should put more emphasis on addressing the needs of their customers - not the superiority of the technology

Beyond "Voice-over-IP"

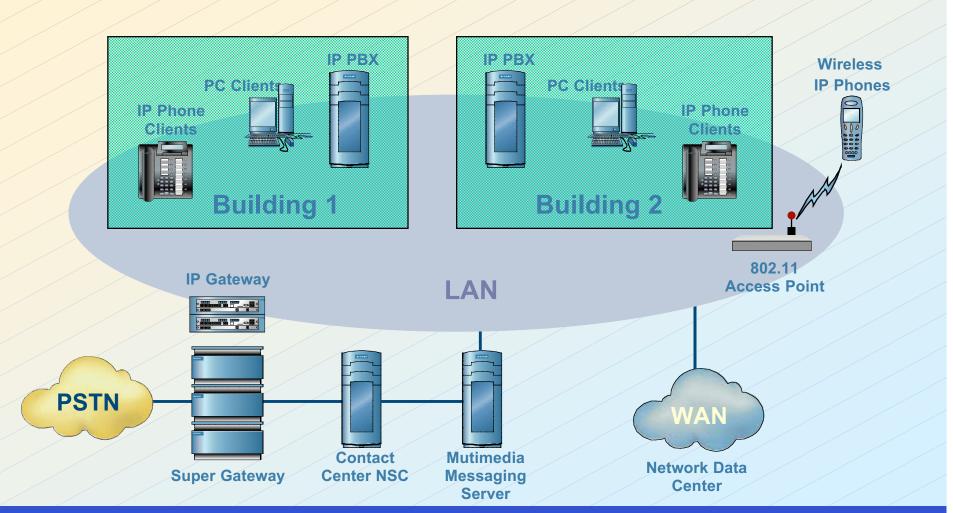
- 4 Benefits now extend beyond the infrastructure level
- 4 Consider asking, "What's in it for me?"
- 4 Market Applications
 - Teleworking and remote access
 - Branch office integration consolidated WAN traffic
 - Plug'n'Play voice local and hosted applications and access
 - PDA integration
 - Video collaboration
 - Unified communications at the user desktop
 - Voice Portals
 - Unified messaging

Compelling Reasons for IP

- 4 Ubiquitous availability and access
- 4 Increased productivity from staff who benefit from interoperability with PDAs, PCs and wireless devices
- 4 Intelligent endpoints that evolve the desktop and add "new value" to business
- 4 Speech-enabled applications that leverage network resources
- 4 Desktop assistants that redefine personal interaction within the enterprise and enable true "multimedia collaboration"
- 4 Video communication as simple and robust as a phone call

TCO - "Fact or Fiction"

- 4 A TCO model is business specific
- 4 Cost reduction is only a small component of the ROI on an IP-based solution
 - Easier movement of people
 - Reductions (or greater investments) in required infrastructure
 - Reduced toll-charges
 - Staff efficiencies
 - Administration convergence in skill sets
 - Scalability
 - Remote and Mobile Workers
 - Account for existing legacy environment and transition


Siemens Skyport Facility

- Silicon Valley Headquarters
- 2000 ports
- Production
 Showcase for
 Customers
- Full Business
 Operation –
 Business over IP

Building Skyport: Network Infrastructure

Building Skyport: Network Infrastructure

- 4 Build a "VoIP ready" network
- 4 Goal was to achieve five 9s reliability
 - Quality of Service (real-time capable)
 - Redundancy to the wiring closet
 - Intelligent diagnostics
 - Security

Lessons Learned

4 Changing the IT Culture

- Network failures IT personnel, not used to having real time traffic on the network, made configuration changes during business hours
- End user support IT needs to be sensitized to performance requirements of a "real time client"
- Problem resolution process Help Desk
- IT and Telecom organizational partnership

Lessons Learned

- 4 Other Lessons Learned
 - Redundancy works system calls remain when a network component fails
 - Complete initial testing of the network is important!
 - QOS important during network reconfiguration to maintain voice priority

Building Skyport — Capital Costs

- For Siemens Skyport, capital costs were higher
 - ◆ More backbone
 - More network infrastructure to support continuous real-time applications
 - **♦ Smarter phones**

	Circuit Switched	VoIP
Backbone Cable	\$644,000	\$610,000
Floor Cable	\$248,000	\$124,000
IP Network	\$990,000	\$990,000
Redundancy	\$438,000	\$438,000
Telecom	\$1,380,000	\$1,668,000
Total	\$3,700,000	\$3,830,000

Skyport — Operating Costs

- 4 Service costs calculated 20% per user reduction from Santa Clara site in allocated service costs
- 4 Reduced MAC charges with simplified telephone moves
- 4 Additional ROI / TCO opportunities targeted
 - Extensive use of PC clients equals fewer desktop devices to support
 - IP trunking to Siemens offices in US and Munich will mean reduced toll charges

Future Plans – Building on VolP

Some of our near term *NEXT STEPS*

- 4 Wireless LAN currently 100 users in trial
- 4 Enabling more IP-based real time applications
 - Instant messaging and presence enabling all workpoints (PCs, phones, personal devices) leveraging VoIP CT
 - Speech driven personal portal
- 4 SIP / H.323 interoperability support

