Data Center Revolution – Impact on Ethernet and MPLS

Umesh Kukreja Hans-Jürgen Schmidtke Kim Jones

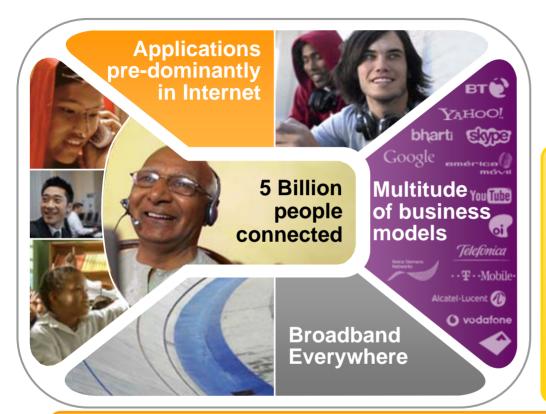
FutureNet, April 2008

Key Points

- Dramatic bandwidth increase
 - for data center networking on a nationwide scale
 - change of the nature of services
- Large build-outs of data center applications are happening
- Carrier Ethernet Transport platform
 - new economic optimization points with DWDM and Carrier Ethernet technology.
 - enables effective multiple layer optimization for DWDM and CE
- Topological growth flexibility and "ease-of-use" are key

Data Center Revolution - Agenda

Data Center and Market Trends


Data Center Metro Networks

Data Center National Network Architecture

Conclusions

... 100 x Increase in Traffic by 2015

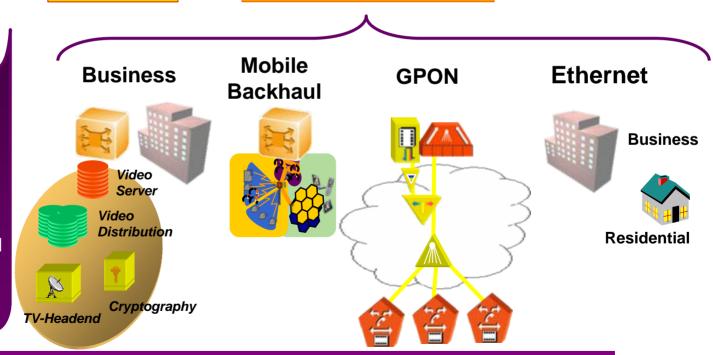
This implies that:

- Total cost of ownership must decrease
- Technology break as IP reaches economical limits
- High data rate support

General Applications Trends

Changing business environment

Telco The Service
Aware
Network


Data

Variety of applications and resulting services:

Residential: Triple / Quadruple play

Business: Managed services

Mobile backhaul

Requirement: Deployment flexibility and service dynamics

The Data Center Challenge

- Bandwidth demand increases continuously
- Technology challenges as IP reaches economical limits
- Total cost of ownership must decrease dramatically

1. Ethernet gains further momentum:

- From enterprise services to consumer data applications
- Carrier Ethernet Transport (CET) is emerging technology
- Entering the classical telco transport domain to overlay or replace SONET/SDH

2. Dynamic optical networks

- are a necessity to support the value proposition
- optical layer (DWDM) is expanding to facilitate the transport of increasing packet traffic volumes driven by data centric applications

3. Converged and simplified end-to-end networks

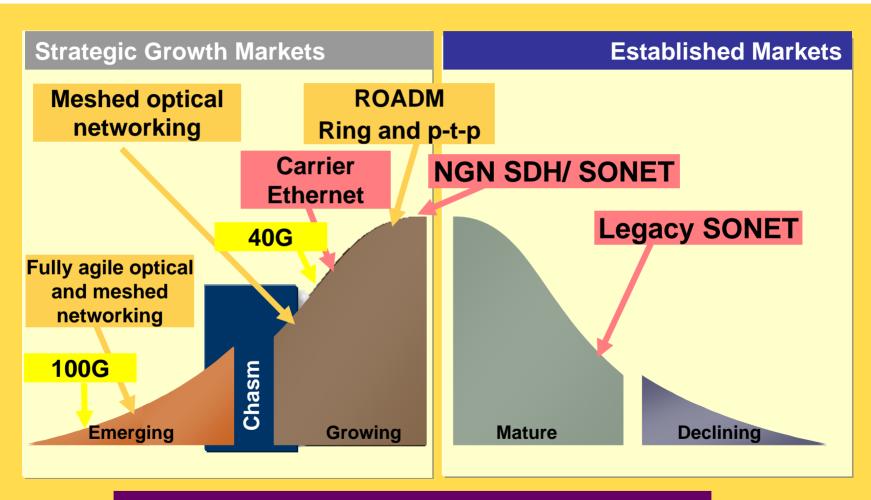
- Network application flexibility necessary for easy topological growth
- highest deployment flexibility

Data Center Management – Key Requirements

- Eliminate network layers
 while reducing complexities and equipment costs
- Improve resource use to achieve optimal bandwidth efficiency
- Simplify end-to-end provisioning to improve time-to-market
- Automate network management for scalability and reduced operating expenses
- Automatically detect problems
 resolve them faster across the entire network

Data Center Revolution - Agenda

Data Center and Market Trends


Data Center Metro Networks

Data Center National Network Architecture

Conclusions

Data Center Transport Technology Options

New technologies enable many new powerful and cost-effective architectures / solutions

Telco & Data Center Networks - Comparison

Telco Networks

- Intra metro connectivity increasing at dramatic speeds.
- Ethernet connectivity services ranging from 10M to 1G
- Typically 4 to 5 POPs with 10G metro connectivity
- Business SLAs are mission critical with financial penalties

Long haul Network

- nX10 G long haul network
- Multiple carriers involved in building a nationwide network.

Data Center Networks

- Intra-datacenter connectivity exploding
- Intra-cage connectivity ranging from 100M to nX10G
- 2 to 4 Datacenters in Metro for resiliency; 10G to 40G bandwidth
- SLA's between Cages and servers are mission critical

Long haul Network

- Need to deploy 40G and 100G national network
- Simplicity of management is key to an ultra scalable network.

Flexibility and Simplicity for Data Centers

Flexibility of Bandwidth

- CIR for applications requiring SONET like bandwidth guarantees
- EIR bandwidth for best effort applications such as occasional bursts.

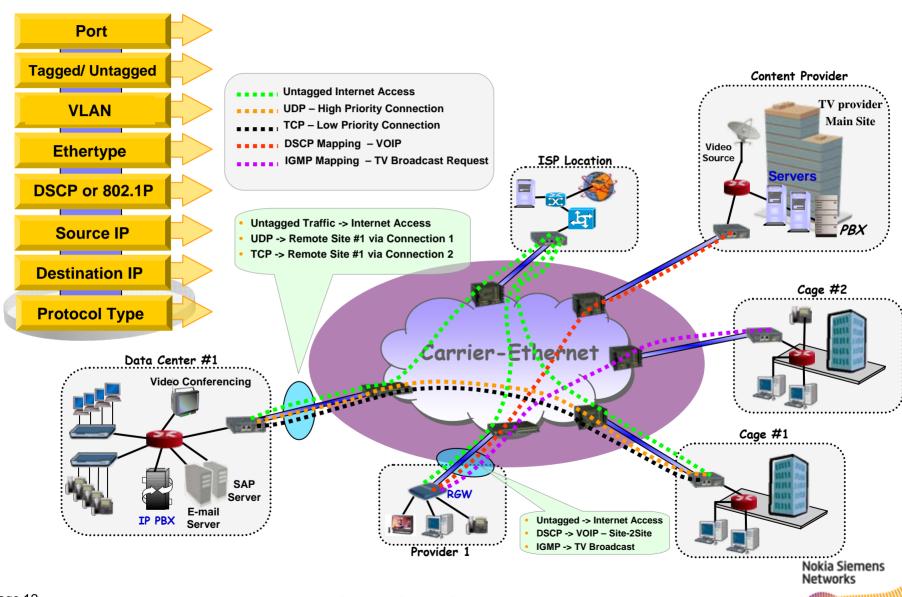
Flexibility of Service Creation

- Enables flexible service packages to meet specific market demands and dynamics.
- Example 10M bundle (3M CIR and 7M EIR) for small and medium customers

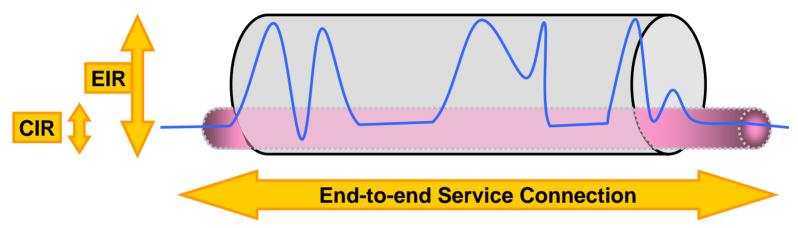
Flexibility in delivering customized solutions for each tenant

Create customized services for large business customers.

Simplicity of Service Upgrades


- Enables commitment to fast service upgrades
- CNM delivers "Customer Controlled" service upgrades for premium customers

Simplicity of Up Selling Customer Bandwidth


Sales teams are empowered to upgrade customers bandwidth up to 100M or 1G.

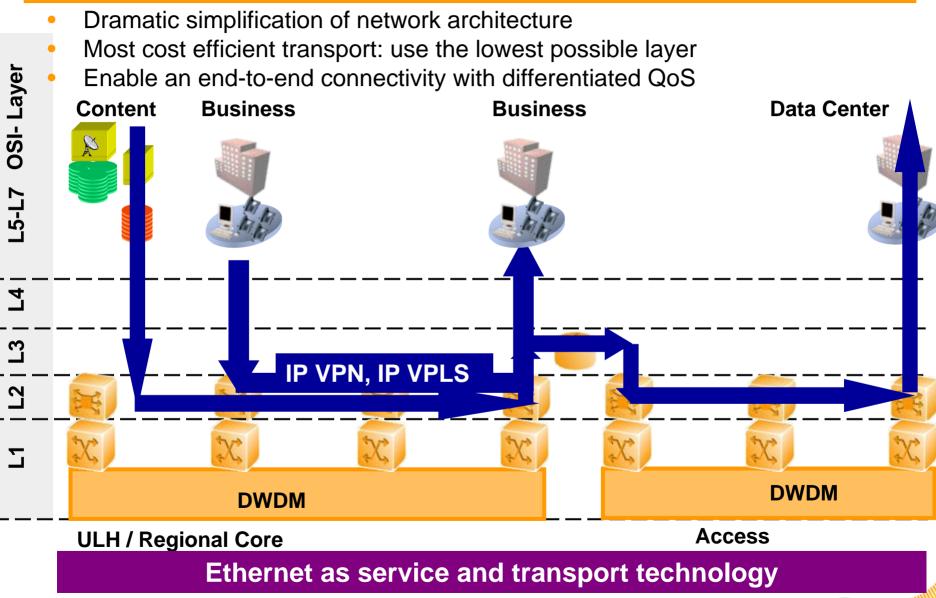
Hard SLAs Without Changing IT Processes

Connection Oriented Carrier Ethernet: Hard QoS for All Services

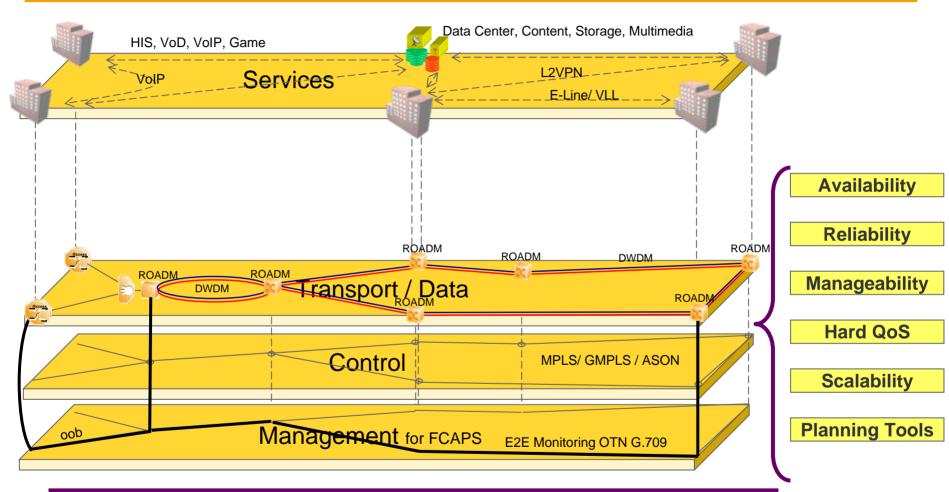
- Committed Information Rate (CIR): 64Kb/s to 1Gb/s
 - Connection Admission Control
- Excess Information Rate (EIR): 64Kb/s to 1Gb/s
- Configurable burst window
- Network delay priority & jitter options:
 - CES
 - Delay Sensitive
 - Business Critical
 - Normal
- Protection

Data Center Revolution - Agenda

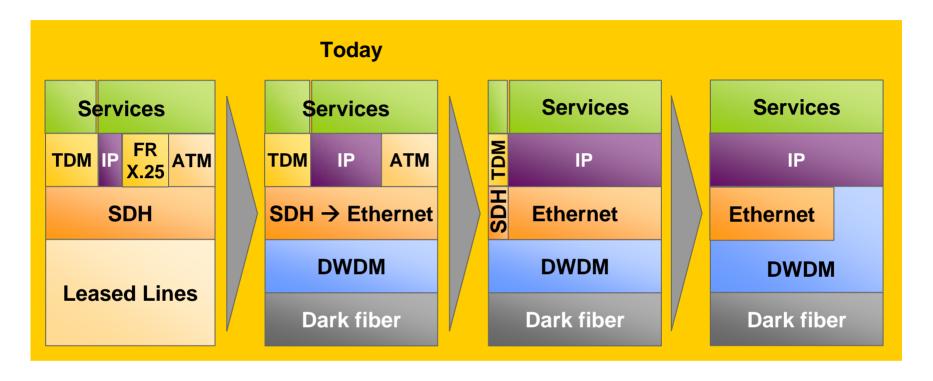
Data Center and Market Trends


Data Center Metro Networks

Data Center National Network Architecture


Conclusions

Data Center Transport Vision: Network Simplification


Example of an Data Center Transport Architecture

- Service aware network is only possible with a tight integration of service, transport/data, control and management plane.
- Multi-Layer Optimization (L1-L3) is a necessity.

Nokia Siemens Networks

Ethernet (IP) over optics (WDM) technology enables the cost efficient Terabit Connection

- Cross-layer optimization will disruptively improve overall cost
- Direct IP over WDM technologies, along with packetized optical networks will serve a new Internet connectivity infrastructure.
- Simplification of stacks will drive Convergence of telco and data networks

04/2008

Deployment in Data Centers is Underway

Deployments of meshed transparent optical networks have been announced

Deployment flexibility

In a real world scenario deployment flexibility is key

Mesh networks

Any variation in one part of the network shall never have an influence on any other part of the network. Meshed networks are by nature strongly inter-connected with all their entities. The hardware and software need to be capable to counter-act those potential challenges

Planning and Deployment

 Processes and procedures of large-scale or continent-wide meshed networks are different than those used for the planning and deployment of smaller segmented networks.

Network Planning Tools

Computer based tools

 Network planning tools with increased computer calculation power became a key element for optical meshed networks deployments.

Site optimization

 Network planning tools calculate the consolidation of sites as well as the concentration of switches/ routing sites.

Integrated network planning

 Service providers are requesting not only a network planning tool, but an ordering, provisioning and maintenance work flow package that is supported by one tool.

Management system interface

 Interfacing of the network planning tool to the management system appears to be a necessary step to handle the complexity of meshed network planning.

Network Planning Tool

... much more than adding up OSNR

Network simulations consider physical effects

- such as dispersion, non-linear effects, OSNR and component aging from 1channel up to full channel count
- Benefit: Guaranteed end-of-life performance without unnecessary margins (CapEx optimizer)

Advanced routing algorithms

- map meshed traffic demands to links and wavelengths
- Benefit: Optimizes the number of wavelengths in a mesh scenario

Input for ordering, installation and commissioning

- LOM, cabling plan, card placement, commissioning parameters, network configuration files ...
- **Benefit**: automation of planning, ordering, commissioning; speeding up processes, and eliminating faults

An easy-to-use planning tool providing expert results to non-experts

Data Center Revolution - Agenda

Data Center and Market Trends

Data Center Metro Networks

Data Center National Network Architecture

Conclusions

Conclusions – Carrier Ethernet + DWDM

- MPLS can be used to create connection oriented Ethernet services
- Trends towards next generation services eg video has accelerated the trend towards Ethernet / Optical based infrastructure.
- The meshed capable Ethernet structure is ideally supported by a meshed optical infrastructure.
- These advances offer increased flexibility, reduced operational complexity and lower equipment costs as compared with today's widespread SONET/SDH infrastructure.
- DWDM's key advantages are its ability to easily transport these newer data protocols and effectively collapse current network overlays
- Carrier Ethernet and DWDM layer are a perfect match for Data Center topologies as well as supporting the service capabilities.

04/2008

Thank You!!

Nokia Siemens Networks

Data Center Revolution – Impact on Ethernet and MPLS

Umesh Kukreja Hans-Jürgen Schmidtke Kim Jones

kim.jones@nsn.com

