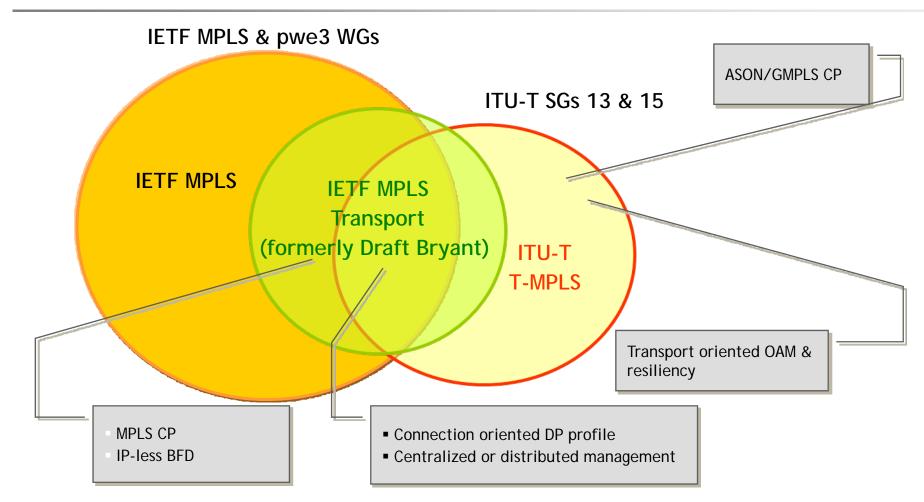


MPLS & Transport MPLS What is the difference?

Marc Lasserre FutureNet 2008 - Boston


Background

What is T-MPLS?

MPLS & T-MPLS Comparison

MPLS/T-MPLS Interconnection Models

MPLS - T-MPLS relationship

While much is in common, there are certain OAM and CP differences

Transport evolves to support increasingly packet-based Services:

- Past pure TDM (SONET/SDH)
- Present MSPP (Ethernet over SONET/SDH)
- Evolving to Packet Transport

IP/MPLS networks perceived by some as expensive and complex

The alternative is combining:

- Architectural, management and operational models of Circuit Switched transport networks with
- Packet switching optimizations

Solution - Transport-optimized MPLS

- MPLS Data Plane
- Extended OAM & Protection capabilities

Agenda

Background

What is T-MPLS?

MPLS & T-MPLS Comparison

MPLS/T-MPLS Interconnection Models

T-MPLS as a subset of MPLS

- MPLS label switching
- No IP routing
- No PHP, no ECMP, no merging
- Bi-dir LSPs (as defined in GMPLS)

Why a "profile" of MPLS?

- Traditional transport networks have strong OAM & resiliency mechanisms
 - Status & perf. monitoring
 - Per-segment monitoring
 - E2e protection (linear & ring)
- Provisioning

Centralized management tool and/or CP

T-MPLS = *MPLS Subset* + *Extended OAM/Protection capabilities*

CO-PS

• TE p2p bi-dir LSPs

Similar to TDM circuit switching paradigm

E2e protection

No support for connectionless mode

Separation of CP and DP

- Ability to use either NMS or GMPLS for connection setup
- Ability to decouple OAM & protection functions from other layers
 E.g. in MPLS, OAM & protection dependent upon IP layer (e.g. LSP ping, VCCV, FRR)

Draft-ietf-pwe3-mpls-transport

Application of Ethernet PWs to MPLS Transport Networks

Transport of MPLS over MPLS

MPLS over Ethernet PW over MPLS

Static PWs over static or dynamic LSPs

No merging, PHP, ECMP

Uni & bi-dir LSPs

Use of VCCV/BFD

Summary of MPLS/draft-bryant/T-MPLS Differences: Dataplane

	MPLS	Draft-bryant	T-MPLS
Dataplane			
		Static tunnel LSP	Static tunnel LSPs
		Uni-dir LSPs	Uni-dir LSPs
		Symetrical bi-dir LSPs	Symetrical bi-dir LSPs
		No ECMP/No PHP/No Merging	No ECMP/No PHP/No Merging
	Dynamic tunnel LSP	Dynamic tunnel LSP	
	RSVP-TE for uni-dir LSP	RSVP-TE for uni-dir or GMPLS for bi-dir	GMPLS in future
		No label merging except if FRR is used	
		No ECMP/No PHP	

Summary of MPLS/draft-bryant/T-MPLS Differences: Signaling

	MPLS	Draft-bryant	T-MPLS
PW Signaling	T-LDP	Static	Static T-LDP (Future)
Tunnel Signaling			
	RSVP-TE	RSVP-TE	Static
	LDP	GMPLS for bi-dir tunnels (RFC3471)	GMPLS in future

Summary of MPLS/draft-bryant/T-MPLS Differences: OAM

	MPLS	Draft-bryant	T-MPLS
OAM			
	PW level	PW level	
	T-LDP PW status		
	VCCV/BFD	VCCV/BFD with or without IP/UDP	G.8114
	LSP level	LSP level	
	LSP ping/traceroute	LSP ping for dynamic LSPs	G.8114
	BFD	Future IP-less BFD (TBD)	
Protection			
	FRR, Active/Standby	FRR for dynamic LSPs	Linear, Ring, DNI

Background What is T-MPLS?

MPLS & T-MPLS Comparison

MPLS/T-MPLS Interconnection Models

Complement Circuit Switching (SDH/OTH/WDM) with Packet Switching in Multilayer Transport networks

Convey Multi-service traffic:

Ethernet

P2p through PW or direct mapping Mp2mp through VPLS

 Any Layer 2 Through PW

MPLS & T-MPLS OAM

MPLS OAM

- PW Connectivity: VCCV
 - Fault Detection & Diagnostics
 - Continuous & on-demand
 - VCCV Flavors
 - VCCV-Ping
 - VCCV-Bfd
 - IP-less BFD
 - BFD with IP/UDP
- LSP connectivity Check

LSP Ping/TR

- Dataplane failure detection
- Consistency check between data & ctrl planes (ingress/egress FEC checks)

BFD

- Fast dataplane failure detection
- Fixed frame format

T-MPLS OAM

 Use of Y.1711/G.8114 for both LSP & PW layers

CV: Connectivity Verification (heartbeat) Y.17fec-cv

FFD: Fast Failure Detection (fast heartbeat)

FDI/BDI: Forward & Backward Defect Indication

PM: Performance Management

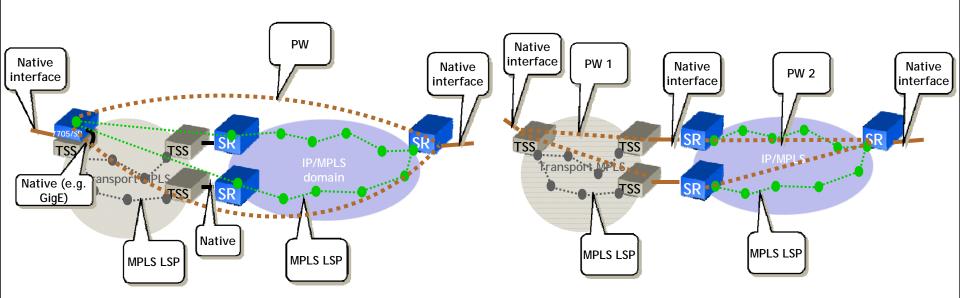
Reliance on MIB counters/SAA

Future: Transport OAM principles to be applied to MPLS

Functionality	T-MPLS	MPLS	Remarks
End-to-end 1+1, 1:1, 1:n Protection	APS	Relies on: IP for dynamic LSP Future IP-less BFD for static LSP	Relies on IGP timers Fast if BFD is HW-assisted
Ring Protection	APS, in standardization	None	
Local bypass	APS for section protection	FRR	
Segmented Protection	Segment 1+1, 1:1, 1:n; DNI	None	
Restoration	GMPLS	MPLS Control Plane	

- Sub-50 msec protection supported by both
 MPLS: FRR or e2e protection with h/w assisted IP-less BFD or ECMP
- Local repair useful when LSP span large geographical areas
- IP reliance can be addressed with IP-less BFD
 Similar e2e protection with MPLS when FRR is not desired

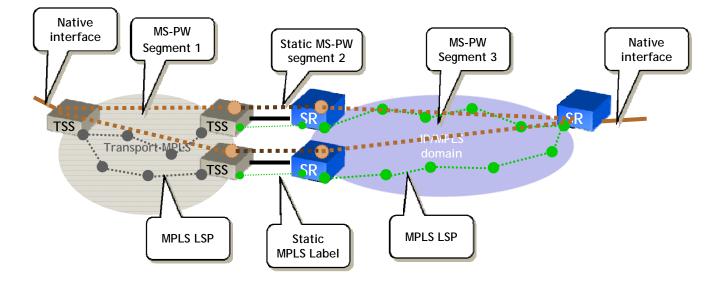
Applicability for both local and e2e protection schemes



Background What is T-MPLS? MPLS & T-MPLS Comparison

MPLS/T-MPLS Interconnection Models

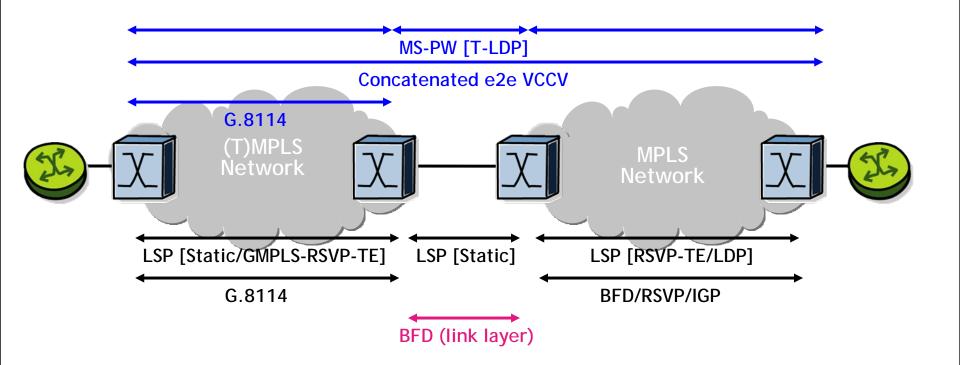
Overlay & Native Models



Technical Analysis		
OAM	1. Per domain: VCCV-BFD with G.8114 with G.8114-like extensions	
	2. E2E: IP/MPLS (e.g. LSP Ping, VCCV-Ping)	
Protection	Path protection + FRR in IP/MPLS	
Operations	Similar to current network: disjoint layers	

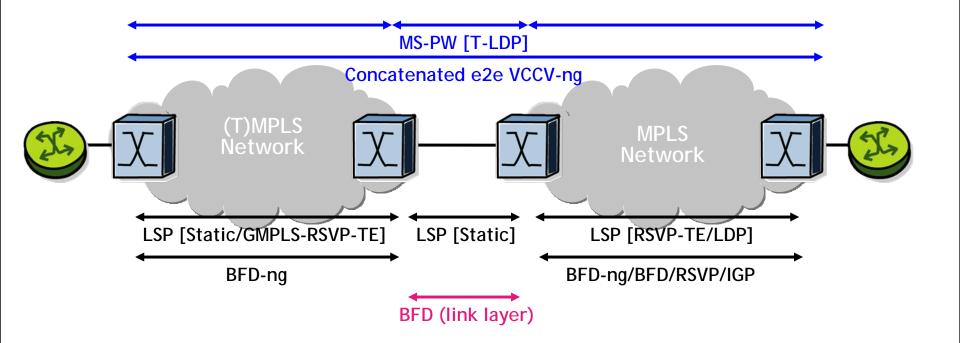
Technical Analysis		
OAM	 Per domain: VCCV-BFD with G.8114-like extensions E2E: client-layer (e.g. Native ATM OAM, 802.1ag) 	
Protection	 Path protection + FRR in IP/MPLS E2E: BFD/VCCV-BFD extensions to propagate down events 	
Operations	Per domain	

PW Interconnect


Technical Analysis		
OAM LSP: BFD-ng (G.8114-like extensions) PW: T-LDP PW Status/VCCV-ng		
Protection	PW: Active/standby via PW status, MS-PW based in future LSP: Path Protection(*) and/or FRR	
Provisioning	 Static MS-PW provisioning/stitching e2e MS-PW via T-LDP 	
Operations	Static LSP: Segment stitching in SR/ TSS border node	

(*) Segment protection

- Pro: preferred by transport people
- Con: does no scale in large environments


PW Options	
	VCCV-BFD for protection/CV PM: TBD (e.g. VCCV-ng)
Dynamic PW (T-LDP FEC 128)	PW status PM: TBD (e.g. VCCV-ng)
	VCCV-BFD for protection/CV PM: TBD (e.g. VCCV-ng)

VCCV-ng (with G.8114-like capabilities) runs end-to-end -> Common PW OAM and capabilities

BFD-ng (with G.8114-like capabilities) runs independently within each segment

Failure Propagation

- E-LMI-like protocol
- Redundancy
 - MC-LAG/MC-APS
 - DNI

Background What is T-MPLS? MPLS & T-MPLS Comparison MPLS/T-MPLS Interconnection Models

T-MPLS is MPLS!

T-MPLS defines extensions to MPLS OAM and Protection

Per ITU-T Transport practices

Seamless MPLS & T-MPLS inter-working

- Native hand-off/Overlay
- PW interconnect

Future MPLS & T-MPLS standards convergence

Q & A

