
 

 

 

 

 

 

 

 
Object-Oriented Test Automation  

 
 

 

 

 

 

 

 

 

 

 

 

  



 

 

Introduction 
 

Today, network and IT-infrastructure testing organizations find themselves in a bind. 
Although business imperatives such as increased competition, pressurized profit 
margins, and the search for efficiencies make automation an important and attractive 
initiative, many test-automation projects encounter significant challenges that lead to a 
poor return on investment (ROI). At the root of these challenges are the inherent 
constraints of traditional, scripting-based automation methodologies. An object-
oriented test automation architecture empowers dramatic improvements in 
automation best practices. The result is breakthrough performance in delivering time 
to value, lowering total cost of ownership (TCO) and increasing the ROI of test-
automation initiatives. 

 

The Challenges of Traditional Test-Automation Approaches 

Traditional telecom and IT infrastructure test and lab automation projects often 
experience difficulties in delivering on their promises because they have been based on 
programmer-generated scripts. Scripts are a great tool for programmers, and may work 
well for smaller test-automation projects or for testing environments that do not 
experience many changes. However, since most testing personnel are non-
programmers and testing environments experience regular and continuous changes, 
script-based methodologies suffer from a number of significant drawbacks: 

 Dependence on programmers and high maintenance costs – scripts are typically 
coded to automate a multistep process, generating lengthy files of TCL, Perl, 
Python or other scripting language. These files are lengthy, complex, and thus 

difficult to maintain, update or repurpose as conditions in 
the testing environment change. Since only programmers 
create or update scripts, the entire automation process 
becomes very tied to individual programmer knowledge. If 
there is a change that makes scripts out of date, 
programmers must then spend significant amounts of time 
to create new version of the scripts. This process is costly in 
terms of programmer time and becomes a bottleneck in 
the productivity of the majority of non-programmer testing 
personnel. 

 

 No scalability, low penetration – due to the high 
cost of maintenance and because most testing 

environments experience regular changes that demand continuous and 
time-consuming script revisions, scalability is very difficult to achieve. As a result, many 
automation projects never go above 10% penetration of testing processes.  



 

 Script bloat – over time, a large 
number (in fact, the majority of 
generated scripts) cover only a 
minority of testing functions. This 
core of automated tests exists in a 
multitude of versions that cover 
minor variations in the 
ever-changing test environment. 
The proliferation of scripts 
becomes a logistical and 
revision-control problem, which requires the introduction of source version control 
(SVC) tools. This further burdens programming staff with additional administrative 
overhead. 

 

 Vulnerability to disruptions due to changes in personnel – since the content of the 
scripts is only known to and maintainable by the programming staff, there is very 
little systematized knowledge. If programmers change their job or role, their 
expertise is lost and the viability of the automation project may be threatened. 

 

 High TCO, low ROI, and project fatigue – 

programmers are specialized staff, and therefore 

expensive. Never-ending, heavy programming 

requirements make the TCO of traditional 

automation projects unacceptably high. Project 

costs become more glaring since due to the low 

penetration of automation into the body of testing 

tasks, the overall testing process does not 

accelerate significantly. This means that the return 

on investment is poor. Lacking the penetration to reach positive ROI and burdened 

with a high TCO, automation projects risk losing funding and sustainability. 

 

The Problem with Script-Generating Automation Tools 

Cognizant of the disadvantages of pure scripting, some technology vendors have 

developed automation products that provide a GUI tool to generate multistep scripts 

through ‘record and replay’ or step-by-step coding methods. The internal code 

underneath the GUI is typically proprietary, which necessitates throwing away all 

existing automation scripts and recreating 

them using the record and replay tool. 

This is a burdensome cost; but there is an 

even greater problem with script 

generators: While the initial script 

generation may be a bit more 

user-friendly than pure coding, the script 



 

generator approach to automation still suffers from many of the same high TCO and 

low ROI problems as programmer-generated scripts.   

Script-generator products often try to compensate for some of the complexities of the 

scripting approach by offering programmer-oriented features like SVC servers to track 

the myriad of script versions. Ironically, these are usually positioned as highly 

empowering, when in fact they point to these tools’ dysfunctional, traditional roots.  

 

An Object-Oriented Approach to Test Automation 
 

Test organizations can gain a vast improvement relative to the high TCO and low ROI of 
traditional test automation by implementing an object-oriented model. Instead of 
creating long, monolithic, hard to maintain scripts, an object-oriented approach 
enables the capture of all automation elements as building block objects. This includes 
objects for interfacing with test lab infrastructure resources (compute, storage, 
network, virtual, cloud), provisioning actions (such as loading OS images), and testing 
tasks (such as running a traffic load test). An object-oriented architecture offers a 
quantum leap in maintainability compared to scripts: 

 The limited scope of automation objects means that they are easy to capture, 
maintain, and refactor to meet the requirements of a changing test environment 

 A shared library of resource, provisioning and testing objects can be maintained in 
a systematic fashion. While programmers and data architects are the ideal 
personnel to build the library, the easy maintainability of the object library reduces 
risk because there is a greater balance between the expertise residing in the 
system vs. that in programmers’ brains. 

 Automation objects can be tagged with arbitrary labels so that they can be easily 
searched and leveraged by many users from a shared library. 

The greatest results come from combining a highly reusable object library with 
powerful GUI tools. Together, they allow for much more productive and efficient 
automation processes and practices: 

 Automation driven teamwide – non-programmers can easily use the object library 
and powerful GUI tools to drive all day-to-day automation processes. Key 
automation GUI tool capabilities include: 

 Drag-and-drop test topology design using physical and virtual test 
infrastructure resource objects 

 Right-click menu-driven provisioning actions from the test topology 
visualization GUI that leverages provisioning objects 

 Drag-and-drop automation workflow design using a library of 
user-generated testing objects, and out-of-the-box automation logic 
objects 



 

 High levels of reuse – not only is the object library highly reusable, but generated 
test topologies, provisioning and test workflows can be saved and shared across 
teams, promoting a higher level of reuse 

 ‘Object transfer’ vs. knowledge transfer – going beyond the simple notion of 
'sharing' between peers in the same department, an object library approach means 
that test topologies and workflows provide a highly accurate and efficient method 
of handing off precise scenarios between developers, architects, QA teams, 
operations, technical support, field personnel and even customers. This is a huge 
time saver, as knowledge transfer processes based on verbal descriptions, text 
writeups, and static diagrams are time consuming and error prone.  

These vastly improved processes revolutionize test automation leading to lower TCO 
and higher ROI: 

 Programmer time is maximized, restraining ongoing costs and lowering TCO 

 Automation of testing tasks accelerates and achieves very high degrees of 
penetration – 80% to 90% of tests can be automated 

 Testing cycles accelerate speed and expand coverage, leading to a strong ROI,  
faster time to market and higher quality 

 Costly test infrastructure resources are optimally used through improved sharing, 
leading to huge CAPEX and OPEX savings 
 

Conclusion 

As data center and network infrastructures become increasingly virtualized and agile, it is 

time to evolve testing to achieve similar agility. Traditional script-based approaches 

cannot achieve the business objectives of technology organizations. A next-generation, 

object-oriented architecture transforms testing processes and delivers compelling ROI. 

 

QualiSystems offers TestShell, an object-oriented test and lab automation solution that is used by 

over 100 service providers, technology manufacturers, enterprises, and government agencies 

worldwide.  For more information about QualiSystems, visit our website at 

http:///www.qualisystems.com.  

  

http://www.qualisystems.com

