# The 2011 **Application & Service Delivery Handbook**

Part 3: Planning and Management

Dr. Jim Metzler, Ashton Metzler & Associates Bv **Distinguished Research Fellow and Co-Founder** Webtorials Analyst Division

# **Platinum Sponsors:**







Blue 🖾 Coať

**Gold Sponsors:** 

agility made possible\*



Packet Design

ipane





Produced by:

# **Executive Summary**

The **2011 Application and Service Delivery Handbook** will be published both in its entirety and in a serial fashion. This is the third of the serial publications and it consists of two sections – a somewhat brief section on planning and a slightly lengthier one on management. The primary goal of the planning section is to provide a central focus in the handbook for planning activities – many of which are described elsewhere in the handbook. The primary goal of the management section is to create a framework that IT organizations can modify and adopt in their environment.

The goal of the 2011 Application and Service Delivery Handbook is to help IT organizations ensure acceptable application delivery when faced with both the first generation, as well as the emerging generation of application delivery challenges.

| Application and Service Delivery Challenges | July 2011 | Page 1 |
|---------------------------------------------|-----------|--------|
|                                             |           |        |

# Planning

In the classic novel *Alice in Wonderland,* English mathematician Lewis Carroll first explained part of the need for why planning is important to application and service delivery (though he may not have known it at the time). In the novel, Alice asks the Cheshire cat, "Which way should I go?" The cat replies, "Where do you want to get to?" Alice responds, "I don't know," to which the cat says, "Then it doesn't much matter which way you go."

# Hope is not a strategy. Successful application and service delivery requires careful planning.

Many planning functions are critical to the success of application delivery. One planning function that has been previously discussed, and will be discussed again in the next sub-section of this handbook, is identifying the company's key applications and services and establishing SLAs for them. As described in the next sub-section, it is not sufficient to just establish SLAs for the company's key applications and services. IT organizations must also identify the key elements (e.g., specific switches and routers, WAN links, servers, virtual machines) that support each of the applications. Other key steps include:

- Baselining the performance of each of the organization's critical applications.
- Baselining the performance of each of the key elements that support each of the critical applications and identifying at what levels of utilization and delay the performance of each of the elements has an unacceptable impact on the performance of the application.
- Establishing SLAs for each of the key elements.

Another key planning activity that is discussed in the next sub-section of this handbook is Application Performance Engineering (APE).

# The goal of APE is to help IT organizations reduce risk and build better relationships with the company's business unit managers.

APE achieves this goal by anticipating, and wherever possible, eliminating performance problems at every stage of the application lifecycle.

Another key planning activity is performing a pre-deployment assessment of the current environment to identify any potential problems that might affect an IT organization's ability to deploy a new application. One task that is associated with this activity is to either create or update the IT organization's inventory of the applications running on the network. Part of the value of this task is to identify unauthorized use of the network; i.e., on-line gaming and streaming radio or video. Blocking unauthorized use of the network can free up additional WAN bandwidth. Another part of the value of this task is to identify business activities, such as downloads of server patches that are being performed during peak times. Moving these activities to an off-peak time also releases additional bandwidth.

Another task associated with performing a pre-deployment assessment is to create a current baseline of the network and the key applications. Relative to baselining the network, IT organizations should modify how they think about baselining to focus not just on utilization, but

| Application and Service Delivery Challenges | July 2011 | Page 2 |
|---------------------------------------------|-----------|--------|
|                                             |           |        |

also on delay. In some instances, however, even measuring delay is not enough. If, for example, a company is about to deploy an application such as telepresence then the preassessment baseline must also measure the current levels of jitter and packet loss. Relative to baselining the company's key applications, this activity involves measuring the average and peak application response times for key applications, both before and after the new application is deployed. This information will allow IT organizations to determine if deploying the new application causes an unacceptable impact on the company's key applications.

## **Integrating Network Planning and Network Operations**

As noted, the next section of the handbook discusses APE. One of the characteristics of APE is that it is a life cycle approach to planning and managing application performance. Addressing performance issues throughout the application lifecycle is greatly simplified if there are tight linkages between the IT personnel responsible for the planning and operational functions. The degree of integration between planning and operations can be significantly enhanced by a common tool set that:

- Provides estimates of the impact on both network and application performance that would result from proposed changes in either the infrastructure or in application traffic patterns.
- Verifies and ensures consistency of configuration changes to ensure error-free network operations and satisfactory levels of service

A common tool set that spans planning and operational functions also supports initiatives aimed at the consolidation of network management tools the goal of which is to reduce complexity and maximize the productivity of the IT staff.

For those organizations that run a large, complex network there often is a significant gap between network planning and network operations. One of the reasons for this gap is that due to the complex nature of the network there tends to be a high degree of specialization amongst the members of the IT function. Put simply, the members of the organization who do planning understand planning, but typically do not understand operations. Conversely, the members of the organization who do operations understand operations, but typically do not understand planning.

Another reason for this gap is that historically it has been very difficult to integrate planning into the ongoing change management processes. For example, many IT organizations use a change management solution to validate changes before they are implemented. These solutions are valuable because they identify syntax errors that could lead to an outage. These solutions, however, cannot identify how the intended changes would impact the overall performance of the network.

# **Route Analytics**

A class of management tool that can facilitate the integration of planning and operations is typified by an IP route analytics solution<sup>1</sup>.

# The goal of route analytics is to provide visibility, analysis and diagnosis of the issues that occur at the routing layer in complex, meshed networks.

A route analytics appliance draws its primary data directly from the network in real time by participating in the IP routing protocol exchanges. This allows the route analytics solution to compute a real-time Layer 3 topology of the end-end network, detect routing events in real time and correlate routing events or topology changes with other information, including application performance metrics. As a result, route analytics can help determine the impact on performance of both planned and actual changes in the Layer 3 network.

Route analytics is gaining in popularity because the only alternative for resolving logical issues involves a very time-consuming investigation of the configuration and log files of numerous individual devices. As described in the next section of the handbook, a logical issue such as route flapping typically causes notably more business disruption than does a physical issue and a logical issue typically takes notably longer to troubleshoot and repair than does a physical issue.

Route analytics is also valuable because it can be used to eliminate problems stemming from human errors in a router's configuration by allowing the effect of a configuration change to be previewed before the change is actually implemented. From an application delivery perspective, route analytics allows the path that application traffic takes through the network to be predetermined before changes are implemented and then allows the application traffic to be tracked in real-time after the application has gone into production.

# **Planning for Cloud Computing**

Most IT organizations that have already implemented either public or private cloud computing have not done so in a highly systematic fashion. In some cases, they used a trial and error approach to choosing a SaaS provider, while in other cases they evaluated one aspect of private cloud computing (e.g., server virtualization) without considering other aspects of private cloud computing and did not plan for the impact that server virtualization would have on other components of IT, such as management or the design of the data center LAN.

# In order to maximize the benefit of cloud computing, IT organizations need to develop a plan (The Cloud Computing Plan) that they update on a regular basis.

The Cloud Computing Plan should identify the opportunities and risks associated with both public and private cloud computing. The Cloud Computing Plan must identify a roadmap of what steps the IT organization will take on a quarter-by-quarter basis for the next two to three years and ensure that the steps are in line with the corporate culture. This includes identifying:

<sup>&</sup>lt;sup>1</sup> More information on this topic can be found at: <u>Webtorials.com</u>

- What functionality (e.g., applications, storage) needs to remain under the tight control of the IT organization and what functionality is appropriate to hand over to a Cloud Computing Service Provider (CCSP).
- What levels of service are good enough for each class of application and for the myriad storage and compute requirements.
- How the IT organization will evolve over time the twelve characteristics of a cloud computing solutions that were discussed in a previous section of the handbook; e.g., virtualization, automation, simplification.
- How the IT organization will evolve its data center LAN architecture to support cloud computing.
- How the IT organization will evolve its use of WAN services to support cloud computing.
- How the IT organization will minimize the security and confidentiality risks associated with public cloud computing services.
- What management functionality must be present in the management domain controlled by the IT organization as well as provided by the relevant network service providers and CCSP(s).
- How the IT organization will overcome potential performance bottlenecks.

The Cloud Computing Plan should look systematically across multiple technologies because of the interconnected nature of the technologies. As part of creating this plan, IT organizations need to understand the cloud computing strategy of their existing and potential suppliers, including the partnerships that the suppliers are establishing between and amongst themselves.

| Application and Service Delivery Challenges | July 2011 | Page 5 |
|---------------------------------------------|-----------|--------|
|                                             |           |        |

# **Application Performance Management<sup>2</sup>**

# Background

Application performance management (APM) is a relatively new management discipline. The newness of APM is attested to by the fact that ITIL has yet to create a framework for APM. In spite of the newness of APM, over a quarter of The Survey Respondents said that APM was currently important to their organization and another one third of The Survey Respondents said that it is important to their organization to get better at APM. In addition to the fact that APM in general is important to IT organizations, some specific components of APM are particularly important. For example, as described below, a critical component of APM is the adoption of service level agreements (SLAs). As described in a preceding section of the handbook, two thirds of The Survey Respondents indicated that over the next year it is either very important or extremely important for their organization to get better at managing SLAs for one or more business critical applications.

Successful APM requires a holistic approach based on integrated management of both the application and/or service itself as well as the end-to-end IT infrastructure. However, only about 15% of The Survey Respondents indicated that their organization's approach to APM was both top down and tightly coordinated.

# Only a small minority of IT organizations has a top down, tightly coordinated approach to APM.

A holistic approach to APM that is based on the integrated management of both the application itself as well as the end-to-end IT infrastructure must focus on the experience of the end user of the application or service. Monitoring actual user transactions in production environments provides valuable insight into the end-user experience and provides the basis for an IT organization to be able to quickly identify, prioritize, triage and resolve problems that can affect business processes.

To quantify the interest that IT organizations have in this task, The Survey Respondents were asked how important it was over the next year for their organization to get better at monitoring the end user's experience and behavior. Their responses are shown in Figure 1.

> Over the next year, getting better at monitoring the end user's experience and behavior is either very or extremely important to the majority of IT organizations.



<sup>&</sup>lt;sup>2</sup> The phrase APM will be used to apply both to an application and to a service as previously defined in this handbook.

A holistic approach to APM must also address the following aspects of management:

- The adoption of a system of service level agreements (SLAs) at levels that ensure effective business processes and user satisfaction for at least a handful of key applications.
- Automatic discovery of all the elements in the IT infrastructure that support each service. This functionality provides the basis for an IT organization to being able to create two-way mappings between the services and the supporting infrastructure components. These mappings, combined with event correlation and visualization, can facilitate root cause analysis, significantly reducing mean-time-to-repair.

The Survey Respondents were asked how important it was over the next year for their organization to get better at identifying the components of the IT infrastructure that support the company's critical business applications. Their responses are shown in Figure 2.

Getting better at identifying the components of the IT infrastructure that support the company's critical business applications and services is one of the most important management tasks facing IT organizations.



If IT organizations can effectively identify which components of the infrastructure support a particular application or service, monitoring can much more easily identify when services are about to begin to degrade due to problems in the infrastructure. As part of this monitoring, predictive techniques such as heuristic-based trending of software issues and infrastructure key performance indicators can be employed to identify and alert management of problems before they impact end users. In addition, outages and other incidents that generate alerts can be prioritized based on their potential business impact. Prioritization can be based on a number of factors including the affected business process and its value to the enterprise, the identity and number of users affected and the severity of the issue.

Once the components of the infrastructure that support a given application or service has been identified, triage and root cause analysis can be applied at both the application and the infrastructure levels. When applied directly to applications, triage and root cause analysis can identify application issues such as the depletion of threads and pooled resources, memory leaks or internal failures within a Java server or .NET server. At the infrastructure level, root cause analysis can analysis can determine the subsystem within the component that is causing the problem.

The Survey Respondents were asked how important it was over the next year for their organization to get better at rapidly identifying the causes of application degradation. Their responses are shown in Figure 3.

#### Getting better at rapidly identifying the causes of application degradation is the most important management task facing IT organizations.

As part of an effective approach to APM, the automated generation of performance dashboards and historical reports allows both IT and business managers to gain insight into SLA compliance and performance trends. The insight that can be gleaned from these dashboards and reports can be used



to enhance the way that IT supports key business processes, help the IT organization to perform better capacity and budget planning, and identify where the adoption of new technologies can further improve the optimization, control and management of application and service performance. Ideally, the dashboard is a single pane of glass that can be customized to suit different management roles; e.g., the individual contributors in the Network Operations Center, senior IT management as well as senior business management.

# **Challenges for Application Management**

Below is a discussion of some of the technical factors that complicate the ability of IT organizations to perform the APM related tasks that were described in the preceding subsection of the handbook. While the technical factors present a significant challenge, an equally significant challenge is organizational – the difficulty of actually taking a top down, tightly integrated approach to APM.

## **Port Hopping**

As previously noted, identifying the applications and services that are running on a network is a critical part of managing application performance. TCP and UDP ports are frequently used by routers, firewalls and other network devices to identify the application that generated a particular packet. A well-known port serves as a contact point for a client to access a particular service over the network. For example, port 80 is the well-known port for HTTP data exchange and port 443 is the well-known port for secure HTTP exchanges via HTTPS.

Some applications have been designed to use port hopping to avoid detection and blocking by firewalls. Applications that do port hopping create significant management and security challenges. Two applications that often use port hopping are instant messaging (IM) and peer-to-peer (P2P) applications such as Skype.

#### **Instant Messaging**

An example of a port-hopping instant messaging client is AOL's Instant Messenger (AIM). AOL has been assigned ports 5190 through 5193 for its Internet traffic, and AIM is typically configured to use these ports. As a result, network managers might well think that by blocking

| Application and Service Delivery Challenges | July 2011 | Page 8 |
|---------------------------------------------|-----------|--------|
|                                             |           |        |

ports 5190 - 5193 they are blocking the use of AIM when in reality they are not. Analogously, network management might see that there is no traffic on ports 5190 - 5193 and assume that AIM is not being used. That may or may not be the case because if these ports are blocked AIM will use port 80 in an effort to circumvent the firewall via the Port 80 black hole described below.

### Peer-to-Peer Networks and Skype

A peer-to-peer computer network leverages the connectivity between the participants in a network. Unlike a typical client-server network where communication is typically to and from a central server along fixed connections, P2P nodes are generally connected via ad hoc connections. Such networks are useful for many purposes, including file sharing and IP telephony.

Skype is a peer-to-peer based IP telephony and IP video service developed by Skype Technologies SA – a company that Microsoft recently acquired. Many peer-to-peer applications, including Skype, change the port that they use each time they start. Consequently, there is no standard Skype port like there is a standard SIP port or a standard SMTP port. In addition, Skype is particularly adept at port-hopping with the aim of traversing enterprise firewalls. Once inside the firewall, it then intentionally connects to other Skype clients. If one of those clients happens to be infected, then the machines that connect to it can be infected with no protection from the firewall. Moreover, because Skype has the ability to port-hop, it is much harder to detect anomalous behavior or configure network security devices to block the spread of the infection.

## The Port 80 Black Hole

Many enterprise applications are accessed via browsers over port 80. Therefore, a firewall can't block port 80 without eliminating much of the traffic on which a business may depend. As mentioned, some applications will port-hop to port 80 when their normally assigned ports are blocked by a firewall. In addition, the port number 80 can't be used as a means of identifying individual web based enterprise applications and port 80 becomes a black hole unless firewalls and other devices are capable of deep packet inspection to identify Layer 7 application signatures.

#### Lack of visibility into the traffic that transits port 80 is a significant management and security challenge for most IT organizations.

The port 80 black hole can have four primary effects on an IT organization. It can cause increased:

- Difficulty in managing the performance of key business-critical, time-sensitive applications
- Vulnerability to security breaches
- Difficulty in complying with government and industry regulations
- Vulnerability to charges of copyright violation

## **Server Virtualization**

Server virtualization presents a number of challenges relative to APM. For example, the VMs that reside on a given physical server communicate with each other using a vSwitch within the server's hypervisor software. As discussed in the section of this handbook entitled Virtualization, unlike the typical physical switch, a vSwitch usually provides limited visibility for the traffic that is internal to the physical server. In addition, prior to virtualization, most server platforms were dedicated to a single application. With server virtualization, virtual machines share the server's CPU, memory and I/O resources. Over-subscription of VMs on a physical server can result in application performance problems due to factors such as limited CPU cycles or memory or I/O bottlenecks. One way to mitigate the impact of the over-subscription of VMs is to implement functionality such as VMotion<sup>3</sup> in an automated fashion. However, automated VMotion creates additional challenges.

While the problems discussed in the preceding paragraph can occur in a traditional physical server, they are more likely to occur in a virtualized server due to the consolidation of multiple applications onto a single shared physical server. In addition, as described in the section of this handbook entitled Virtualization, it is notably more difficult to troubleshoot a performance problem in a virtualized environment than it is in a traditional physical environment. That is why, as is also pointed out in that section of the handbook, half of the IT organizations consider it to be either very or extremely important over the next year for them to get better performing management tasks such as troubleshooting on a per-VM basis.

## **Mobility**

Another factor that is making APM more complex is that most IT organizations have to support a growing number of mobile employees<sup>4</sup>. As described in the section of the handbook entitled Application and Service Delivery Challenges, at one time mobile workers tended to primarily access either recreational applications or business applications that were not very delay sensitive; e.g., email. However, mobile workers now need to access an increasingly wide range of business critical applications, many of which are delay sensitive. One of the issues associated with supporting mobile workers' access to delay sensitive, business critical applications is that because of the way that TCP functions, even the small amount of packet loss that is often associated with wireless networks results in a dramatic reduction in throughput. As such, there is a significant risk that an application that performs well when accessed over a wired network will run poorly when accessed over a wireless network.

The challenges associated with supporting mobility are why, as highlighted in the section of the handbook entitled Application and Service Delivery Challenges, two thirds of The Survey Respondents indicated that over the next year it is either moderately or very important for their IT organization to get better at managing the performance of applications delivered to mobile users.

<sup>&</sup>lt;sup>3</sup> VMWare.com VMotion

<sup>&</sup>lt;sup>4</sup> One analyst firm has predicted that there will be one billion mobile workers worldwide by year end 2011

<sup>-</sup> FindArticles.com

## **Cloud Computing**

There are many ways that the adoption of cloud computing adds to the complexity of APM. For example, assume that the 4-tier application BizApp that was described in the section of this report that is entitled *Virtualization*, is moved to a cloud computing service provider's data center. Without the appropriate tools and processes it is impossible to tell in advance what impact that move will have on application performance. However, the fact that BizApp will run on different servers, which are most likely virtualized, and is accessed over different WAN links than it had been previously, means that the application performance will be different. This lack of ability to understand in advance how a change in the IT environment will impact the performance of an application is one of the factors driving the need for Application Performance Engineering which is described below.

As was described in the section of the handbook entitled *Virtualization*, troubleshooting any performance degradation exhibited by BizApp is complex even if each tier of the application is hosted by an enterprise IT organization. However, if one or more tiers of the application are hosted by a CCSP troubleshooting becomes notably more complex because management data must now be gathered from multiple organizations.

| Application and Service Delivery Challenges | July 2011 | Page 11 |
|---------------------------------------------|-----------|---------|
| and control pointery enalisingee            |           |         |

# **APM** in the Private Enterprise Network<sup>5</sup>

Enterprise IT organizations can choose among several types of tools for monitoring and managing application performance over a private enterprise network. These include: application agents, monitoring of real and synthetic transactions, network flow and packet capture, analytics, and dashboard portals for the visualization of results.

At a high level, there are two basic classes of tools. The first class of tool monitors global parameters such as user response time or transaction completion time and provides alerts when thresholds are exceeded. These tools include agents on end user systems and monitoring appliances in the data center. The second class of tool supports triage by monitoring one or more of the components that make up the end-to-end path of the application. These tools include devices that capture application traffic at the flow and packet levels, agents on database, application, and web servers, as well as agents on various network elements.

The ultimate goal of APM is have a single screen that integrates the information from all of the tools in both categories. The idea being that a dashboard on the screen would indicate when user response time or transaction completion time begins to degrade. Then, within a few clicks, the administrator could determine which component of the infrastructure was causing the degradation and could also determine why that component of the infrastructure was causing degradation; e.g., high CPU utilization on a router.

Each type of individual tool has its strengths and weaknesses. For example, agents can supply the granular visibility that is required for complex troubleshooting but they represent an additional maintenance burden while also adding to the load on the servers and on the network. Monitoring appliances have more limited visibility, but they don't require modification of server configurations and don't add traffic to the network. Taking into consideration these trade-offs, IT organizations need to make tool decisions based on their goals for APM, their application and network environment as well as their existing infrastructure and network management vendors.

A complete discussion of APM tools and methodology is outside the scope of this section of the handbook. That said, the remainder of this section is devoted to the following topics that are of particular importance for APM within the private enterprise network:

- Application Performance Engineering that deals with the processes of optimizing the performance of applications over their lifecycles.
- End-to-End Visibility of all aspects of all the infrastructure components that can have an effect of application performance.
- **Route Analytics** that deals with mitigating the logical issues within the routed IP network that can negatively impact application performance.

<sup>&</sup>lt;sup>5</sup> This refers to managing the performance of applications that are delivered over WAN services such as Frame Relay, ATM and MPLS.

# **Application Performance Engineering**

Ideally the issue of application performance would be addressed at all stages of an application's lifecycle, including multiple iterations through the design/implement/test/operate phases as the application versions are evolved to meet changing requirements. However, as discussed in a preceding section of the handbook, the vast majority of IT organizations don't have any insight into the performance of an application until after the application is fully developed and deployed. In addition, the vast majority of IT organizations have little to no insight into how a change in the infrastructure, such as implementing server virtualization, will impact application performance prior to implementing the change.

# Application Performance Engineering (APE) is the practice of first designing for acceptable application performance and then testing, measuring and tuning performance throughout the application lifecycle.

During the operational, or production phase of the lifecycle, APM is used to monitor, diagnose, and report on application performance. APM and APE are therefore highly complementary disciplines. For example, once an APM solution has identified that an application in production is experiencing systemic performance problems, an APE solution can be used to identify the root cause of the problem and to evaluate alternative solutions. Possible solutions include modifying the application code or improving application performance by making changes in the supporting infrastructure, such as implementing more highly performing servers or deploying WAN Optimization Controllers (WOCs). Throughout this section of the handbook, implementing products such as WOCs will be referred to as a Network and Application Optimization (NAO) solution. Independent of which remedial option the IT organization takes, the goal of APE can be realized – performance bottlenecks are identified, root causes are determined, alternative remedies are analyzed and bottlenecks are eliminated.

An IT organization could decide to ignore APE and just implement NAO in a reactive fashion in an attempt to eliminate the sources of the degraded application performance. Since this approach is based on the faulty assumption that NAO will resolve all performance problems, this approach is risky. This approach also tends to alienate the company's business unit managers whose business processes are negatively impacted by the degraded application performance that is not resolved until either WOCs are successfully deployed or some other solution is found. A more effective approach was described in the preceding paragraph. This approach calls for NAO to be a key component of APE – giving IT organizations another option to proactively eliminate performance problems before they impact key business processes.

The key components of APE are described below. The components are not typically performed in a sequential fashion, but in an iterative fashion. For example, as a result of performing testing and analysis, an IT organization may negotiate with the company's business unit managers to relax the previously established performance objectives.

#### • <u>Setting Performance Objectives</u>

This involves establishing metrics for objectives such as user response time, transaction completion time and throughput. A complex application or service, such as unified communications, is comprised of several modules and typically different objectives need to be established for each module.

#### Discovery

Performance modeling and testing should be based on discovering and gaining a full understanding of the topology and other characteristics of the production network.

#### • <u>Performance Modeling</u>

APE modeling focuses on creating the specific usage scenarios to be tested as well as on identifying the performance objectives for each scenario. A secondary focus is to identify the maximum utilization of IT resources (e.g., CPU, memory, disk I/O) and the metrics that need to be collected when running the tests.

#### • Performance Testing and Analysis

Test tools can be configured to mimic the production network and supporting infrastructure, as well as to simulate user demand. Using this test environment, the current design of the application can be tested in each of the usage scenarios against the various performance objectives. The ultimate test, however, is measured performance in the actual production network or in a test environment that very closely mimics the actual production environment.

#### • Optimization

Optimization is achieved by identifying design alternatives that could improve the performance of the application and by redoing the performance testing and analysis to quantify the impact of the design alternatives. In conjunction with the testing, an ROI analysis can be performed to facilitate cross-discipline discussion of the tradeoffs between business objectives, performance objectives, and cost. This component of APE is one of the key ways that APE enables an IT organization to build better relationships with the company's business unit managers.

# **End-to-End Visibility**

The IT industry uses the phrase end-to-end visibility in various ways. Given that one of this handbook's major themes is that IT organizations need to implement an application-delivery function that focuses directly on applications and not on the individual components of the IT infrastructure, this handbook will use the following definition of end-to-end visibility:

# End-to-end visibility refers to the ability of the IT organization to examine every component of IT that impacts communications once users hit ENTER or click the mouse button until they receive a response back from the application.

End-to-end visibility is one of the cornerstones of assuring acceptable application performance. End-to-end visibility is important because it:

- Provides the information that allows IT organizations to notice application performance degradation before the end user does.
- Identifies the symptoms of the degradation and as a result enables the IT organization to reduce the amount of time it takes to identify and remove the causes of the degraded application performance.
- Facilitates making intelligent decisions and getting buy-in from other impacted groups. For example, end-to-end visibility provides the hard data that enables an IT organization to know that it needs to add bandwidth or redesign some of the components of the infrastructure

| Application and Service Delivery Challenges |  |
|---------------------------------------------|--|
|                                             |  |
| Application and ocivice Delivery Onancinges |  |

July 2011

because the volume of traffic associated with the company's sales order tracking application has increased dramatically. It also positions the IT organization to manage the recreational use of the network.

 Allows the IT organization to measure the performance of a critical application before, during and after a change is made. These changes could be infrastructure upgrades, configuration changes or the adoption of a cloud computing delivery model. As a result, the IT organization is in a position both to determine if the change has had a negative impact and to isolate the source of the problem so it can fix the problem quickly.

Visibility can enable better cross-functional collaboration if two criteria are met. One criterion is that all members of the IT organization use the same tool or set of tools. The second criterion is that the tool(s) are detailed and accurate enough to identify the sources of application degradation. One factor that complicates achieving this goal is that so many tools from so many types of vendors (e.g., APM, NAO) all claim to provide the necessary visibility.

Providing detailed end-to-end visibility is difficult due to the complexity and heterogeneity of the typical enterprise network. The typical enterprise network, for example, is comprised of switches and routers, access points, firewalls, ADCs, WOCs, intrusion detection and intrusion prevention appliances from a wide range of vendors. An end-to-end monitoring solution must profile traffic in a manner that reflects not only the physical network but also the logical flows of applications, and must be able to do this regardless of the vendors who supply the components or the physical topology of the network.

The section of the handbook entitled Virtualization highlighted a visibility challenge created by server virtualization. That problem is that in most cases once a server is virtualised the IT organization looses visibility into the inter-VM traffic on a given server. There are a number of solutions for this problem. One of these solutions is based on configuring one of the ports on the virtual switch inside the server as a SPAN port or mirror port. This allows a monitor to capture flow and packet information within the physical server. The monitoring device can be a virtual appliance installed on the physical server. Transaction and response time monitors are also available as virtual appliances. While changes in the virtual topology can be gleaned from flow analysis, a more direct approach is for the APM tool to access data in the hypervisor's management system via supported APIs. Gathering data from this source also provides access to granular performance information such as a VM's utilization of allocated CPU and memory resources.

When implementing techniques to gain end-to-end visibility, IT organizations have easy access to management data from both SNMP MIBs and from NetFlow. IT organizations also have the option of deploying either dedicated instrumentation or software agents to gain a more detailed view into the types of applications listed below. An end-to-end visibility solution should be able to identify:

- Well-known application layer protocols; e.g. FTP, Telnet, HTTPS and SSH.
- Services, where a service is comprised of multiple inter-related applications.
- Applications provided by a third party; e.g., Oracle, Microsoft, SAP.
- Applications that are not based on IP; e.g., applications based on IPX or DECnet.
- Custom or homegrown applications.
- Web-based applications.
- Multimedia applications.

Relative to choosing an end-to-end visibility solution, other selection criteria include the ability to:

- Scale as the size of the network and the number of applications grows.
- Add minimum management traffic overhead.
- Support granular data collection.
- Capture performance data as well as events such as a fault.
- Support a wide range of topologies both in the access, distribution and core components of the network as well as in the storage area networks.
- Support real-time and historical analysis.
- Integrate with other management systems.
- Support flexible aggregation of collected information.
- Provide visibility into complex network configurations such as load-balanced or faulttolerant, multi-channel links.
- Support the monitoring of real-time traffic.
- Generate and monitor synthetic transactions.

## **Route Analytics**

### Background

The use of route analytics for planning purposes was discussed in the preceding section of the handbook. This section of the handbook will expand on the use of route analytics for operations.

One of the many strengths of the Internet Protocol (IP) is its distributed intelligence. For example, routers exchange reachability information with each other via a routing protocol such as OSPF (Open Shortest Path First). Based on this information, each router makes its own decision about how to forward a packet. This distributed intelligence is both a strength and a weakness of IP. In particular, while each router makes its own forwarding decision, there is no single repository of routing information in the network.

The lack of a single repository of routing information is an issue because routing tables are automatically updated and the path that traffic takes to go from point A to point B may change on a regular basis. These changes may be precipitated by a manual process such as adding a router to the network, the mis-configuration of a router or by an automated process such as automatically routing around a failure. In this latter case, the rate of change might be particularly difficult to diagnose if there is an intermittent problem causing a flurry of routing changes typically referred to as route flapping. Among the many problems created by route flapping is that it consumes a lot of the processing power of the routers and hence degrades their performance.

The variability of how the network delivers application traffic across its multiple paths in a traditional IT environment can undermine the fundamental assumptions that organizations count on to support many other aspects of application delivery. For example, routing instabilities can cause packet loss, latency and jitter on otherwise properly configured networks. In addition, alternative paths might not be properly configured for QoS. As a result, applications perform poorly after a failure. Most importantly, configuration errors that occur during routine network

changes can cause a wide range of problems that impact application delivery. These configuration errors can be detected if planned network changes can be simulated against the production network.

As previously noted in this handbook, the majority of IT organizations have already implemented server virtualization and the amount of server virtualization is expected to increase over the next year. Once an IT organization has implemented server virtualization, or a private cloud computing solution that includes server virtualization, VMs can be transferred without service interruption from a given physical server to a different physical server. This can make it difficult for the network operations team to know the location of an application at any given point in time – a fact that makes troubleshooting a problem that much more difficult.

To exemplify a related management challenge, assume that an IT organization has implemented a type of hybrid cloud computing solution whereby the IT organization hosts the application and data base tiers in one of their data centers and that the relevant servers have been virtualized. Further assume that a CCSP hosts the application's web tier and that all of the CCSP's physical servers have been virtualized. All of the users access the application over the Internet and the connectivity between the web server layer and the application server layer is provided by an MPLS service.

Since the web, application and database tiers can be moved, either dynamically or manually, it is extremely difficult at any point in time for the IT operations organization to know the exact routing between the user and the web tier, between the Web tier and the application tier or between the application tier and the database tier. This difficulty is compounded by that fact that as previously discussed, not only does the location of the tiers of the application change, but the path that traffic takes to go from point A to point B also changes regularly.

The dynamic movement of VMs will increase over the next few years in part because organizations will increase their use of virtualization and cloud computing and in part because organizations will begin to deploy techniques such as cloud bursting. Cloud bursting refers to taking an application that currently runs in a data center controlled by an IT organization and dynamically deploying that application and the subtending storage in a data center controlled by a CCSP. Techniques such as cloud bursting will enable organizations to support peak demands while only deploying enough IT infrastructure internally to support the average demand. These techniques, however, will further complicate the task of understanding how traffic is routed end-to-end through a complex, meshed network.

# The operational challenges that are created due to a lack of insight into the router layer are greatly exacerbated by the adoption of server virtualization and cloud computing.

### **Logical vs. Physical Factors**

Factors such as route flapping can be classified as logical as compared to a device specific factor such as a link outage, which is considered to be a physical factor. Both logical and physical factors impact application performance. In simple networks, such as small hub and spoke networks, logical factors are typically not a significant source of application degradation. However, in large complex networks that is not the case.



In the vast majority of cases, logical factors cause as much or more business disruption than do physical factors.

The other question asked The Survey Respondents to indicate the relative amount of time it takes to troubleshoot and repair a physical error vs. a logical error. Their answers are shown in Figure 5.



#### In the vast majority of instances, logical errors take either somewhat more or notably more time to troubleshoot and repair than do physical errors.

SNMP-based management systems can discover and display the individual network elements and their physical or Layer 2 topology. However, these systems cannot identify the actual routes packets take as they transit the network. As such, SNMP-based systems cannot easily identify problems such as route flaps or mis-configurations.

As noted in the preceding section, the goal of route analytics is to provide visibility, analysis and diagnosis of the issues that occur at the routing layer. A route analytics solution achieves this goal by providing an understanding of precisely how IP networks deliver application traffic. This

| Application and Service Delivery Challenges | July 2011 | Page 18 |
|---------------------------------------------|-----------|---------|
|---------------------------------------------|-----------|---------|

requires the creation and maintenance of a map of network-wide routes and of all of the IP traffic flows that traverse these routes. This in turn means that a route analytics solution must be able to record every change in the traffic paths as controlled and notified by IP routing protocols.

By integrating the information about the network routes and the traffic that flows over those routes, a route analytics solution can provide information about the volume, application composition and class of service (CoS) of traffic on all routes and all individual links. This network-wide, routing and traffic intelligence serves as the basis for:

- Real-time monitoring of the network's Layer 3 operations from the network's point of view.
- Historical analysis of routing and traffic behavior as well as for performing a root causes analysis.
- Modeling of routing and traffic changes and simulating post-change behavior.

Criteria to evaluate a route analytics solution is the ability of the solution to:

- Listen to and participate in the routing protocol exchanges between routers as they communicate with each other.
- Compute a real-time, network-wide routing map. This is similar in concept to the task performed by individual routers to create their forwarding tables. However, in this case it is computed for all routers.
- Map Netflow traffic data, including application composition, across all paths and links in the map.
- Monitor and display routing topology and traffic flow changes as they happen.
- Detect and alert on routing events or failures as routers announce them, and report on correlated traffic impact.
- Correlate routing events with other information, such as performance data, to identify the underlying cause and effect.
- Record, analyze and report on historical routing and traffic events and trends.
- Simulate the impact of routing or traffic changes on the production network.

Another criterion that an IT organization should look at when selecting a route analytics solution is the breadth of routing protocol coverage. For example, based on the environment, the IT organization might need the solution to support protocols such as OSPF, IS-IS, EIGRP, BGP and MPLS VPNs. One more criterion is that the solution should be able to collect data and correlate integrated routing and Netflow traffic flow data. Ideally, this data is collected and reported on in a continuous real-time fashion and is also stored in such a way that it is possible to generate meaningful reports that provide an historical perspective on the performance of the network. The solution should also be aware of both application and CoS issues and be able to integrate with other network management components. In particular, a route analytics solution should be capable of being integrated with network-agnostic application performance management tools that look at the endpoint computers that are clients of the network, as well as with traditional network management solutions that provide insight into specific points in the network; i.e., devices, interfaces, and links.

### **APM in Public and Hybrid Clouds**

As is widely known, IT organization have begun to make significant use of public and hybrid cloud computing solutions and the use of those solutions is expected to increase significantly. Once enterprise applications are partially or completely hosted outside of private data centers, IT organizations will need to make some adjustments in their approach to APM. In particular, public clouds have a significant impact on each the topics discussed in the preceding section

#### • <u>APE</u>

While an enterprise IT organization might hope that a SaaS provider would use APE as part of developing their application, they typically can't cause that to happen. IT organizations can, however, use APE to quantify the impact of taking an application, or piece of an application, that is currently housed internally and hosting it externally. IT organizations can also use APE for other cloud related activities, such as quantifying the impact on the performance of a SaaS based application if a change is made within the enterprise. For example, APE can be used to measure the impact of providing mobile users with access to a SaaS-based application that is currently being used by employees in branch offices.

#### • End-to-End Visibility

The visibility necessary for effective APM can be compromised by the dynamic nature of cloud environments and by the difficulty of extending the enterprise monitoring solutions for application servers, Web servers, databases into a public IaaS cloud data center. Part of this challenge is that many IaaS providers have an infrastructure that has often been optimized based on simplicity, homogeneity and proprietary extensions to open source software.

#### Route Analytics

As noted in the preceding section, both hosting enterprise assets at a CCSP's premise, and using services provided by a CCSP creates a more complex network topology. This fact combined with the potential for the dynamic movement of those assets and services increases the probability of a logical error. As such, the adoption of cloud based service increases the need for route analytics.

There are a number of possible ways that an IT organization can adjust their APM strategies in order to accommodate accessing services hosted by a CCSP. These include:

- Extend the Enterprise APM Monitoring solutions into the public cloud using agents on virtual servers and by using virtual appliances. This option assumes that the CCSP offers the ability to install multiple virtual appliances (e.g., APM monitors, WOCs, and ADCs) and to configure the virtual switches to accommodate these devices.
- Focus on CCSPs that offer either cloud resource monitoring or APM as a service as described in the section of the handbook entitled Cloud Networking Services. Basic cloud monitoring can provide visibility into resource utilization, operational performance, and overall demand patterns. This includes providing metrics such as CPU utilization, disk reads and writes and network traffic. The value of cloud monitoring is increased where it is tied to other capabilities such as automated provisioning of instances to maintain high availability and the elastic scaling of capacity to satisfy demand spikes. A possible issue with this option is integrating the cloud monitoring and enterprise monitoring and APM solutions.

 Increase the focus on service delivery and transaction performance by supplementing existing APM solutions with capabilities that provide an outside-in service delivery view from the perspective of a client accessing enterprise applications or cloud applications over the Internet or mobile networks. Synthetic transactions against application resources located in public clouds are very useful when other forms of instrumentation cannot be deployed. One option for synthetic transaction monitoring of web applications is a third party performance monitoring service with end user agents distributed among numerous global ISPs and mobile networks.

#### About the Webtorials® Editorial/Analyst Division

The Webtorials<sup>®</sup> Editorial/Analyst Division, a joint venture of industry veterans Steven Taylor and Jim Metzler, is devoted to performing in-depth analysis and research in focused areas such as Metro Ethernet and MPLS, as well as in areas that cross the traditional functional boundaries of IT, such as Unified Communications and Application Delivery. The Editorial/Analyst Division's focus is on providing actionable insight through custom research with a forward looking viewpoint. Through reports that examine industry dynamics from both a demand and a supply perspective, the firm educates the marketplace both on emerging trends and the role that IT products, services and processes play in responding to those trends.

Jim Metzler has a broad background in the IT industry. This includes being a software engineer, an engineering manager for high-speed data services for a major network service provider, a product manager for network hardware, a network manager at two Fortune 500 companies, and the principal of a consulting organization. In addition, he has created software tools for designing customer networks for a major network service provider and directed and performed market research at a major industry analyst firm. Jim's current interests include cloud networking and application delivery.

For more information and for additional Webtorials<sup>®</sup> Editorial/Analyst Division products, please contact Jim Metzler at jim@webtorials.com or Steven Taylor at taylor@webtorials.com.

#### Published by Webtorials Editorial/Analyst Division www.Webtorials.com

#### **Division Cofounders:**

Jim Metzler *jim @webtorials.com* Steven Taylor *taylor @webtorials.com* 

#### **Professional Opinions Disclaimer**

All information presented and opinions expressed in this publication represent the current opinions of the author(s) based on professional judgment and best available information at the time of the presentation. Consequently, the information is subject to change, and no liability for advice presented is assumed. Ultimate responsibility for choice of appropriate solutions remains with the reader.

#### Copyright © 2011 Webtorials

For editorial and sponsorship information, contact Jim Metzler or Steven Taylor. The Webtorials Editorial/Analyst Division is an analyst and consulting joint venture of Steven Taylor and Jim Metzler.



# Next-Generation Application Acceleration



Organizations everywhere face tough challenges in optimizing business application performance. For today's distributed enterprises, centralization and server consolidation can create user response and network capacity problems; business applications are often slow or unpredictable; and bandwidth costs are out of control. Now, IT is expected to deliver even more — including corporate communication videos and cloud delivered software-as-a-service (SaaS) applications — all while containing costs.

To solve these and other application delivery problems, you have to understand how application performance requirements have changed, know which technologies can meet your business demands today and prepare for capacity needs down the road.

# The Foundation: Optimizing Traditional Applications

Rapid growth of files, email, storage and backup systems put an incredible burden on WAN connections and create significant end-user performance issues — unless you can accelerate traffic. Blue Coat's protocol optimization, byte caching, compression and QoS are the technologies required to accelerate remote and branch office access to centralized files, email and backup systems. These technologies offer significant performance benefits by mitigating the latency caused by chatty file protocols, caching data and expanding bandwidth for high-volume transfers. Besides data applications, however, you need specialized technologies to optimize performance of key emerging applications.

## **Next Generation WAN Optimization Requirements**

Many of the latest applications are changing the way we collaborate, educate, and communicate. Video, for instance, is increasingly used for training and live communications, and Cloud delivered SaaS applications are enabling new business processes. However, the traditional acceleration technologies cannot address these newer types of applications.

#### Streaming video and rich media

Delivering high-quality, on-demand or live streaming video requires massive amounts of bandwidth on specialized protocols. For example, a single live stream can be 200KB to 1.5MB and large on-demand files can reach 25MB, 100MB and even 1GB in size. In addition, bandwidth-hungry rich media applications can dominate the entire network and still fail due to insufficient resources.

#### **Cloud Delivered SaaS applications**

SaaS applications, such as Salesforce.com, or SaaS-hosted SAP and SharePoint applications have unique management challenges due to their location and the encryption used to secure them. Because SaaS offerings are located outside of your network they are outside of your control, but still need to be accelerated. They are also encrypted with SSL and use certificates and keys controlled by the SaaS provider and the Web browser – not your organization.

Traditional WAN Optimization technologies would require you to place an appliance on the SaaS provider's network, which is simply not possible. Because SaaS applications rely on HTTP and SSL delivery, you need optimization technologies that can asymmetrically accelerate HTTP and SSL, as well as secure client-side certificate handling so you can decrypt and accelerate the sessions.



# **Next-Generation Acceleration**

The good news is next generation acceleration technologies available today can help you optimize your most critical applications and reclaim bandwidth from non-essential traffic. These new optimization technologies include:

- Video caching, stream splitting and Content Delivery Network (CDN) to enable optimized delivery of business video and minimize the impact of recreational video over the WAN.
- Asymmetric optimizations technologies and external SSL certificate handling that don't require changes to the SaaS infrastructure, like Blue Coat CloudCaching engine.
- URL classification and content filtering with usage and QoS policies to identify and contain recreational content and traffic.
- Integration with web security service to protect Internet-connected branch offices from malware and enable faster SaaS, 100% recreational offload and high availability networking.

#### Figure 1: Performance gains by technology type

| Þ |  |
|---|--|
|   |  |

#### Video Optimization

- Scale internal Video 10x 100x 1000x
- Reduce Recreational Video by 30-80% across the distributed enterprise



#### **Cloud Acceleration**

- Accelerate SaaS applications directly to branch offices by 7 93x
- Eliminate back-hauling SaaS/Internet applications over WAN



#### Traditional WAN Optimization

- Accelerate applications by 3x-300x from data center to branch office
- Reduce storage replication and backup bandwidth by up to 90%

# Get the right acceleration strategy

Acceleration requirements have rapidly moved beyond CIFS and MAPI acceleration. Video and SaaS application delivery are IT's challenges today. With the right acceleration strategy, you can gain superior business value from internal and external infrastructure. Find out how Blue Coat can help at www.bluecoat.com

# About Blue Coat

Blue Coat Systems secures and optimizes the flow of information to any user, on any network with leading web security and WAN Optimization solutions. Blue Coat enables the enterprise to tightly align network investments with business objectives, speed decision making and secure business applications for a long-term competitive advantage.



#### **Application Performance: Your Window to Service Delivery**

Virtually all organizations depend on online services to transact business. For online brokerage, retail companies and others, online services are their business. For insurance companies and manufacturers, online services enable their business. Regardless of your business, you want to deliver a positive customer experience. Satisfied customers come back and customer retention is the foundation of your bottom line. Pressure is mounting on IT departments to deliver on this requirement and, as a result, continually increasing amounts of IT budgets are spent on tools and processes to assure that services are performing.

Keeping customers happy is nothing new. For years, organizations focused on the domains – the network, the databases, the servers – assumed that if all the domains worked so would the service. But that strategy exposed an IT paradox: IT services are more than the sum of their parts. Managing each domain for peak performance is no guarantee of success. The information essential to assuring services include the service delivery pathway - the route through the infrastructure the service takes to reach the customer - and the components in that pathway - the network links, databases and servers that are essential to delivering the service. Tools and teams, dedicated to supporting individual domains, often have a hazy view of which components actually impact specific services. For example, a single server outage may have nothing to do with your critical business service...or it may have everything to do with it. Managing each domain for peak performance without a clear asset-to-service view is not a guarantee that you will stay ahead of calls to the help desk.

#### **Applications as Bellwethers**

Are applications another domain or a service? Actually, it depends. Some applications, such as online trading, are the end-user service. An email application is often an end-user service but can also be an enabling part of an online retail service, thereby putting the application into the role of a domain in a service delivery pathway. What can be said with certainty is that applications are an essential part of any service, and applications, like services, rely on the other domains to function. Consider how Web-based application is the service itself or a service enabler, its performance is linked tightly with your business service delivery and that makes your application performance an open window into your service performance.

The CA Technologies <u>Service Assurance</u> portfolio is built around proactive performance management. On a foundation of <u>CA eHealth® Performance Manager</u> for client-server applications, CA Technologies added and integrated CA Introscope and CA Customer Experience Manager, the <u>CA Application Performance Management</u> (CA APM) solution, to detect, triage and diagnose performance problems in your complex, composite and Web application environments. CA APM supports both Java and .NET applications and provides end-to-end visibility to online transactions. To complete the picture, CA Technologies acquired NetQoS, bringing products like <u>CA NetQoS</u> <u>SuperAgent®</u> and <u>CA NetQoS ReporterAnalyzer™</u> into the fold. CA NetQoS SuperAgent tracks every TCP application packet traversing the network between clients and servers, providing metrics such as network, server and application latency for all applications. CA NetQoS ReporterAnalyzer provides historical, real-time and predictive behavioral views through traffic composition metrics that show how applications tax and compete for network resources. With these detailed application performance metrics, application delivery bottlenecks are quickly



pinpointed, root cause established and performance issues corrected, often before user impact. And the ripple effect on business services is all positive.

#### Service Assurance: Application Performance Plus

The CA Technologies Service Assurance portfolio provides a layer of intelligence that leverages data from your existing infrastructure and application performance management tools used to directly manage your IT assets, including <u>Infrastructure Management</u> products like CA Spectrum<sup>®</sup> Infrastructure Manager, CA eHealth Performance Manager and CA NetQoS Performance Center, and CA <u>Application Performance Management</u> products like CA Introscope<sup>®</sup> and CA Customer Experience Manager. Consolidating information from these performance managers, <u>CA Service Operations Insight (formerly CA Spectrum<sup>®</sup> Service Assurance)</u> provides the business service analytics, uniquely linking applications to infrastructure to calculate key performance indicators (KPIs) for service delivery and risk.

CA Spectrum Service Assurance creates a single service model, leveraging information from the domain managers, that is updated dynamically as things change, so you know what components – infrastructure or application – are in the pathway of your critical business service and you know if there is a problem that will impact service delivery, even as configurations and virtual machines change. With the CA Technologies Service Assurance portfolio, you can prioritize your efforts, have confidence in the information you have and fix the important things first to minimize customer and business impact. Even better, CA Technologies can show you where a potential problem is chipping away at performance, for example, telling you when a server farm is losing machine power even if it is not yet impacting service. This puts you where you want to be - two steps ahead of your customer.

#### Integration Works at Rooms To Go

Customers that have benefitted from the tight integration in the CA Technologies Service Assurance portfolio have compelling stories to tell. Putting it all together was the key for Rooms To Go. To enhance the customer experience at its 150 showrooms across the U.S., <u>Rooms To Go</u> added CA Technologies software for network, application and virtual system performance management to its existing Service Assurance products to maintain service availability and improve support of its retail and distribution outlets.

Rooms To Go is using the <u>CA NetQoS Performance Center</u>, a key component of the Service Assurance portfolio, and <u>CA Virtual Assurance for Infrastructure Managers</u> to improve the performance of its most business-critical, networked applications and their supporting infrastructure. For example, Rooms To Go uses the two CA Technologies solutions to monitor and manage its point-of-sale (POS) application that provides immediate purchase-related information and fast credit application processing and approvals.

"The CA NetQoS Performance Center and CA Virtual Assurance for Infrastructure Managers will help Rooms To Go be more proactive in ensuring a high level of service across our stores and improving the customer experience as a result," said Jason Hall, Director of IT systems for Rooms To Go. "Combined with our other products from CA Technologies, the CA NetQoS and CA Virtualization Management solutions will give us a more complete understanding of what is happening across our network and virtualized infrastructure and where we need to direct our attention to solve problems faster, prepare for future capacity needs, and optimize application performance."

In addition to monitoring how well the network delivers the POS application to the Rooms To Go showrooms, the CA NetQoS solution will help Rooms To Go understand how application traffic affects network performance, with views into the composition of traffic on every network link, and which applications and users consume bandwidth. Before installing NetQoS, Hall had no visibility into how end users were experiencing application and service performance across the WAN or LAN. "It was purely the end user," he said. "We waited for someone to call. Operationally, that gives the end user the perspective that the systems are slow ... and that we're not doing



anything about it. " Hall said that adding NetQoS's performance management capabilities to his suite of tools has also helped him solve some service delivery mysteries, particularly with his company's intranet. You can read more on this story on SearchNetworking.com in their June 16, 2010 article by Shamus McGillicuddy titled, "Service delivery management: Integrating IT management tools."

#### Jack Henry & Associates Put Service First

No one doubts the importance of accuracy and high performance when it comes to financial applications. Jack <u>Henry & Associates</u> processes transactions, automates business processes, and manages mission-critical information for more than 8,700 financial institutions and corporate entities, serving around six million end-users who depend on Jack Henry to run business-critical applications and financial processes. Initially, the company had no consistent means of monitoring end-to-end performance across its network and applications, which made it difficult to safeguard service levels and manage capacity.

"We have to prove every single day that our performance is meeting customer requirements, which, without endto-end monitoring, was challenging," said Josh Bovee, Senior Network Engineer, Jack Henry & Associates. "We needed to focus on application performance from the end-user perspective and create a baseline of how well we were serving those customers so we could understand when performance degraded and what impact things like infrastructure changes might have. We were reliant on getting all the IT groups in the same room, and then putting our heads together until we located the source of the issue. With limited insight into network and application performance metrics, this would often take days."

Realizing they needed to take a more proactive approach to managing its business critical banking applications, Jack Henry looked for a solution that would address its performance management challenges. After struggling for several months with a competitive product, they arranged with CA Technologies for a Proof of Concept with the NetQoS Performance Center, starting with the CA NetQoS SuperAgent. "We started the POC at 8 a.m. and by 1 p.m. we were capturing more meaningful data with SuperAgent than after six months working with the competitive product. SuperAgent was also easier to implement. We didn't need to install an agent on the server or re-architect our infrastructure, which was something we very much wanted to avoid," notes Bovee. Having made the decision to deploy CA NetQoS SuperAgent, the company decided to implement additional modules of the CA NetQoS Performance Center.

Jack Henry now has a finger firmly on the pulse of its customers' business-critical applications, furthering its commitment to industry-leading client satisfaction and retention rates. As a result of their investment in CA Service Assurance solutions, the company is already benefiting from improved service, more cost-effective support and greater business agility. "We now have a great foundation on which to continue to improve our service levels and customer satisfaction," concludes Bovee.

#### CA Technologies Manages Risk to Assure Application and Service Delivery

Service Assurance and risk management is achieved through new, advanced technology that can model the IT assets that comprise services, track service quality (end-user experience), the status of each IT asset (network devices, systems, databases and applications) and calculate each asset's risk to each service dynamically. With this information, you'll know how to proactively fix problems before they impact users.

These capabilities also factor dimensions of risk beyond typical KPIs to include compliance, answering questions such as: "Are my business services at risk because configurations do not meet the gold standard? Do we have the latest security patches deployed on every device?"

Identifying and measuring risk to business services benefits both IT executives and the technical staff who manage the IT environment "hands-on." By understanding risk, IT executives can make more informed decisions about



capital and operational investments. Technical staff benefit because they can see the root cause of trends that will impact services in the future and can proactively prevent impact to quality.

CA Technologies Service Assurance is a mature, integrated portfolio that provides end-to-end visibility into business services, applications and transactions linked with top-to-bottom insight over the entire infrastructure. Providing great service in a consistent manner, meeting SLAs and having the agility in your infrastructure to roll out new services quickly and efficiently is just table stakes in today's complex IT environment. No matter what business you are in, service assurance is critical to your success, and CA Technologies can work with you to help you deliver the service your customers demand.

Advertorial





# UNIFIED PERFORMANCE MANAGEMENT

#### VISIBILITY | CONTROL | OPTIMIZATION

#### COMPLETE WAN OPTIMIZATION

Increase the speed and efficiency of your wide area network.

Exinda's Unified Performance Management (UPM) solution delivers everything you need to manage your application performance and ensure the highest quality user experience.

Point solutions lack inter-communication between the functions of visibility, control, and optimization. This creates contention between these independent solutions, as each function is unaware of the effect its actions has on the other.

Exinda's unique, holistic approach to WAN Optimization eliminates the communication barriers and contention of point solutions, by integrating visibility, control and optimization, into a single, unified solution.

#### LATEST ADVANCES IN UNIFIED PERFORMANCE MANAGEMENT

Exinda's development team is continually adding new features and functionality into our unified performance management solution. It is because of our agile development cycle and constant push to add innovation to our product line that Exinda has become the fastest growing WAN optimization vendor in the world. The following are some of the latest advances in our UPM solution.

#### EDGE CACHE



Exinda Edge Cache will allow you to reduce bandwidth usage, decrease network costs, and accelerate content delivery, improving user experience and productivity.

#### **Edge Cache**

The Exinda Edge Cache<sup>TM</sup> enables single-sided caching of Internetbased content at the network edge, including web objects, videos and software updates, delivering a superior user experience and reducing WAN resource utilization.

Web objects are cached at the network edge when they are first downloaded from the Internet or across WAN links. These objects can then be delivered to the users on subsequent requests over the corporate local area network much faster without needing to download the data over the WAN again, providing a better user experience and increased productivity to the workforce. By caching web objects in the local office, organizations can drive down the network traffic consumed by each office, which directly reduces network costs.

The Exinda Edge Cache enables caching of web objects, video, software update and other content on the WAN. It also offers cache statistics, which provide insight into the amount of repetitive data being off-loaded from the WAN link, how cacheable the network data is, how frequently the cache is being accessed, and by how many hosts, helping organizations to understand the nature of their network traffic over time.

The Exinda Edge Cache can also be aligned with an organization's optimization policies, allowing the administrator to only cache specific content for specific users or groups of users, and to maintain very precise controls over how much WAN bandwidth should be made available for each application traversing the network.

#### APPLICATION PERFORMANCE SCORE



Gain proactive reports on users perception of application performance & responsiveness.

#### **Application Performance Score**

A significant feature of Exinda's WAN Optimization solutions is its ability to provide Application Performance Scores (APS). Exinda's APS provides a single data point to monitor and report on the overall health and performance of an application on your network. With APS, you can set performance thresholds for the applications on your network, and easily monitor if and when the thresholds are met or exceeded. When WAN application performance issues arise, the APS allows you to quickly troubleshoot the problems, by drilling down into individual metrics for the application, including network delay, server delay, jitter and loss, and round trip time, helping you to pinpoint and address the source of the performance issue.

Exinda also allows you to monitor and report on TCP efficiency and health. With Exinda, TCP efficiency reports let you examine how efficiently packets flow through the network, based on the number of dropped packets and retransmitted packets for the application. When combined with Exinda's TCP health monitoring, TCP efficiency reporting gives you a more in-depth view of network and application performance. TCP Health monitoring displays the health of TCP Connections by showing the total number of TCP connections, and how many were aborted, ignored, or refused by the server. With Exinda, you get a simple graphical view of the TCP health of the network, allowing rapid drill down for troubleshooting network and application performance issues.



# **Unified Performance Management**

Network Visibility, Control and Optimization - All in a Single Appliance

# "Unified Performance Management is driven by improving the quality of a user's experience."

- Ed Ryan, Exinda Vice President of Products

#### The Best Solution For You.

#### Identify and Improve Application Performance

- Application Performance Measurement technology measures user experience objectively.
- Identify the source of application performance issues Network, Server or Application.
- Apply application performance scoring to more than 2,000 applications.

#### Offer a Superior User Experience

- Dramatically increases user download speeds for internet applications, videos, and software updates.
- Accelerate delivery of content to users at LAN speeds from a web cache with a single appliance.
- · Optimize and accelerate mission critical applications.

#### Real-time and Historical Reporting

- Real time reporting showing all traffic on the network over the last 10-60 seconds.
- Up to 2 years of historical reporting on applications, hosts, conversations, URL's, and performance scores "on appliance".
- Microsoft Active Directory Integration allows you to report on users or groups regardless of IP Address.
- Netflow v9 export, providing in-depth layer 7 details of your network usage and application performance.

#### **Conserve WAN Resources**

- Guarantee bandwidth for critical applications while controlling recreational traffic.
- Byte and Object level caching with dual or single appliances reduces the footprint of traffic on the WAN serving files, software updates, and video to users at LAN speeds.
- Reclaim up to 90% of the bandwidth on your WAN circuits to deliver data more efficiently.

#### Leverage Your Investment

- Exinda is fully scalable supporting WAN circuits from 256k to 10Gbps, and includes mobile client support.
- Exinda auto-discovery limits the operational burden and cost of managing large scale multi-site deployments.
  Exinda's Service Delivery Platform (SDP) is available as an appliance or on a cloud-based management platform, offers a flexible and cost-saving option to manage your network.
- A single appliance delivering visibility, control, and optimization makes it easier and more cost-effective to manage and expand over time.

#### Features & Benefits

#### Visibility

Provides insight into network activity, usage and performance. Gives you the information you need to keep your network operating at peak performance

- Layer 7 Classification
- Heuristic Classification
- URL Classification
- Drill Down Capabilities
- Beal Time Monitoring
- Ton Talkers/Ton Conversation
- Active Directory User ID
- Anonymous Proxy Detection
- Application Performance Score
- Service Level Agreements
- Network Health
- Citrix Published Application
  - Automated PDF Reporting

#### Contro

Maximize network resources to the needs of your organization through comprehensive control over network traffic without placing heavy-handed restrictions on users.

- QoS / Dynamic per IP User
- Bandwidth Manageme
- Traffic-shaping
- Prioritization
- Active Directory Integration

#### Optimization

Rapidly, turn understanding into action that drives network performance, improves the user experience, and optimizes productivity.

- Layer 4 TCP Optimizatio
- Layer 7 Application Acceleration
- Universal Caching
- Compression
- Intelligent Acceleration
- Peer Auto-Discoverv
- SSL Acceleration

Americas +1 877 219 0603 info.americas@exinda.com UK / Europe +44 808 120 1996 info.emea@exinda.com Asia Pacific +61 3 9415 8332 info.apac@exinda.com

IMEA +971 4 295 5049 info.imea@exinda.com



## Software as a Service (SaaS) A Cloud-Ready Network ensures rollout success

#### www.ipanematech.com

Cloud adoption adds complexity to network management. Cloud applications such as SaaS collaboration bring many of the same issues as licensed software, but each IT implementation project can have a larger impact because of its reliance on your WAN. By aligning your network with business and Application Performance Objectives, WAN Governance puts you in control of this complexity and network impact.

WAN Governance improves the IT Governance you already have in place by providing:

- A holistic approach to global visibility, control and optimization of application performance, as opposed to conventional solutions operating as independent agents
- Business continuity and control as SaaS applications are adopted
- Guaranteed application performance for any network architecture
- Network capabilities to absorb enterprise requirements for agility, flexibility and growth
- Next-generation solutions for implementing and managing a cloudready network

Using WAN Governance, your organization can:

- Understand the nature of application traffic
- Control and optimize this traffic
- Guarantee application performance
- Improve users' Quality of Experience
- Simplify network operations
- Control network costs and leverage savings

IT infrastructure directors today find themselves in one of two situations: the business side of their organization is planning for SaaS applications that the VPN will need to support, or existing SaaS applications are underperforming or impacting the performance of other business applications.

VPNs and the tools used to manage them are optimized for traditional private applications residing in data centers, not those stored in the cloud. For example, SaaS collaboration applications, such as Google Apps, Microsoft BPOS/Office 365 and IBM LotusLive, consume much more network bandwidth than many traditional applications. Moving from traditional on-premise collaboration to a SaaS counterpart dramatically changes the way traffic flows across the WAN.

In order to avoid application performance issues and ensure optimal end-user experience, infrastructure directors need to make their VPN "cloud ready." A cloud-ready network (CRN) is a network that provides full application performance visibility and total control of both SaaS and on-premise applications. Ideally, the best time to prepare is prior to your first SaaS implementation, so that the impact of SaaS on your VPN can be mastered from the pilot phase through full enterprise rollout.

With Ipanema for a fraction of the cost per user of your SaaS you can:

- Guarantee the performance of SaaS across the WAN
- Ensure peaceful co-existence of SaaS and existing applications (ERP, CRM...)
- Obtain a dashboard of application performance for all critical applications including SaaS
- Take full advantage of hybrid MPLS + Internet networks
- Shift to WAN governance, plan and grow your network according to business needs









www.ipanematech.com



# Valeo Embraces the Cloud and Maximizes Value

Valeo, one of the world's leading suppliers of components, integrated systems and mod-ules for automotive CO2 emissions reduction, rolled out a hybrid network with MPLS + Internet for its migration from conventional email and collaboration applications to Google Apps.

Valeo's network supports approximately 160 sites worldwide, 52,000 users, and the delivery of applications such as ERP and CATIA.

Using Ipanema's ANS to dynamically manage application performance over their hybrid network, Valeo successfully deployed Google Apps with full Applications Visibility, QoS & Control, and Dynamic WAN Selection.

"With Ipanema, we divided by three the transfer cost of each Gbyte of band-width over our global network," says Alain Meurou, Infrastructure and Network Manager at Valeo.

#### **Return on investment**

Enterprises that have chosen to move to a unified hybrid net-work controlled by ANS typically chose not to upgrade their MPLS bandwidth in favor of the less-expensive Internet bandwidth. Including the price of the deployed ANS solution, typically 1 to  $2 \in$  per user per month , most enterprises were able to obtain a 20% decrease in overall network costs, upgrade available band-width by a factor of three, and adequately prepare for traffic increases over the next three to five years.

#### All-in-One Solution for Guaranteeing Application Performance

Ipanema's Autonomic Networking System (ANS) tightly couples into a single, all-in-one solution.

- QoS & Control
- Application Visibility
- WAN Optimization
- Dynamic WAN Selection (hybrid network unification)

With ANS, all application performance challenges can be managed with a holistic approach over the global network. The autonomic networking solution automates tasks that IT organizations cannot perform with traditional approaches. Orchestrating network traffic in real-time, ANS manages the complexity of the hybrid cloud and guarantees application performance for public and private applications. ANS not only helps to guarantee the performance of SaaS during and after implementation, but the end-user experience for all applications over your WAN, and much more cost effectively.



Since every enterprise is different, IT strategy on whether or not to change network architecture for SaaS collaboration varies from one company to another. You do not necessarily need to change your architecture to make your network "cloud-ready".

All companies, however, must implement a minimum set of capabilities in order to avoid application performance issues during and after SaaS implementation, or to fix issues resulting from a prior SaaS deployment. Companies that use or plan to use a hybrid (MPLS + Internet) network architecture will also want to consider additional capabilities to further optimize their "cloud-ready network" (CRN).



Beyond the Network...

Advertorial

ipanema

# Packet Design

# Network-Wide IP Routing and Netflow Monitoring, History, Modeling & Planning

#### **Optimize IP Networks with Traffic Explorer**

- Monitor and analyze critical traffic dynamics across all IP network links and routes by Class of Service (CoS)
- Strengthen change management with operationally accurate network modeling based on realtime, network-wide routing and traffic state
- Reduce Internet transit costs with IGP/BGP-aware peering and transit routing and traffic analysis
- Analyze network-wide traffic usage, even per MPLS VPN
- Improve network continuity with easy traffic trending
- Perform network-wide traffic capacity planning

#### **Packet Design Overview:**

- Founded in 2003, Packet Design pioneered and is the market-leading provider of routing and traffic analysis solutions
- 500+ global enterprises, Service Providers, and government and military agencies utilize Packet Design solutions to manage their complex IP networks.
- Packet Design solutions offer IT departments significant operational cost savings by increasing the accuracy and efficiency of key IT business processes.

#### **Overview of Traffic Explorer**

Traffic Explorer is the first solution to combine real-time, integrated routing and Netflow traffic monitoring and analysis, with "what-if" modeling and capacity planning capabilities. Unlike previous traffic analysis tools that only provide localized, link by link traffic visibility, Traffic Explorer's knowledge of IP routing enables visibility into network-wide routing and traffic behavior. Powerful "what-if" modeling capabilities empower network managers with new visibility to strengthen change management processes and optimize network infrastructure costs.

Traffic Explorer delivers the industry's only integrated analysis of network-wide routing and traffic dynamics. Standard reports and threshold-based alerts help engineers track significant routing and utilization changes in the network. An interactive topology map and deep, drill-down tabular views allow engineers to quickly perform root cause analysis of important network changes, including the routed path for any flow, network-wide traffic impact of any routing changes or failures, and the number of flows and hops affected. This information helps operators prioritize their response to those situations with the greatest impact on services or applications.



Traffic Explorer provides extensive "what-if" planning features to enhance ongoing network operations best practices. Traffic Explorer lets engineers model changes on the "as running" network, using the actual routed topology and traffic loads. Engineers can simulate a broad range of changes, such as adding or failing routers, interfaces and peerings; moving or changing prefixes, BGP policy configurations, link capacities or traffic loads; even adding new MPLS VPNs. Simulating the effect of these changes on the actual network results in faster, more accurate network operations and optimal use of existing assets, leading to reduced capital and operational costs and enhanced service delivery.

**Proven, Market Leading Solutions:** Based in Palo Alto, Packet Design Inc. is the pioneer and market leader in routing-aware network management solutions. Packet Design is a member of the Cisco Technology Developer Partner program. Find out more at www.packetdesign.com

