Broadband Packet Switching \& Routing

Section 4

```
4x+3
```


Broadband Switching and Routing

- Frame and Cell header
details

Flow Control	Virtual Path Ident.	
Virtual Path Ident.	Virtual Circuit Ident.	
Virtual Circuit Identifier		
Virtual Circuit Ident.	Payload Type	CLP
Error Control (CRC-8)		

[^0]
Connection-oriented PDUs

∇ PDU addressing is the key to statistical (packet) multiplexing and switching
∇ Both ATM and Frame Relay PDUs are inherently connection
 oriented.
∇ The connection identifies a logical circuit number

ATM Cell Structure

$\nabla 53$ Octet cell with 5 octet header and 48 octet payload
∇ All of payload may or may not be available for actual data; depends on "AAL"

- Physical layer delimiter
- Error control for header only

ATM Cell Header @ UNI

- Addressing sufficient for over 16 million virtual circuits @ UNI; over 268 million @ NNI
∇ VPIVCI split for ease of switching
$\boldsymbol{\nabla}$ "Payload type" identifies userlctl cell, continuation of AAL PDU, \& congestion.

Flow Control	Virtual Path Ident.	
Virtual Path Ident.	Virtual Circuit Ident.	
Virtual Circuit Identifier		
Virtual Circuit Ident.	Type	CLP
Error Control (CRC-8)		

ATM Cell Header @ UNI

- "Flow control" for multiple access on UNI facilities; NOT for congestion management \quad CLP (Cell Loss Priority) is for congestion management and priority

ATM Cell Header @ NNI

$\boldsymbol{\nabla}$ Addressing sufficient for about 268 million circuits at NNI

- No "flow control" at this level
∇ Congestion indication bit in Payload Type.

Virtual Path Ident. (VPI)						
	Virtual Path Ident.				Virtual Circuit Ident.	
	Virtual Circuit Identifier					
	Virtual Circuit Ident.	Payload Type				
	Error Control (CRC-8)					

Frame Relay Header

- Similar to ATM

VHas default address space for 1024 virtual circuits per physical link

\square DLCI \quad C/R (for DTE)

- Extended Address


```
x,
```


Frame Relay Format

\boldsymbol{V} C/R bit passed through
 VExtended address allows for multiple octets of additional addresses on a DLCI-by DLCI basis

 \square DLCI \quad C/R (for DTE)

Extended Address


```
<0
```


Frame Relay Format

∇ CRC provides protection for header; available hardware convenience
V Extended address allows for multiple octets of additional addressing
∇ Possible multiprotocol interconnect information

Broadband Switching and Routing

FFrame and Cell header details
 TWide area routing example and issues

Virtual Circuit Addressing

∇ Circuit numbers are meaningful on local (single interface) only
∇ Switches may translate circuit numbers
∇ Switches are responsible for finding paths through the network, rerouting, etc.

2

Network Routing Example

1. Operator defines endpoints for virtual circuits

Network Routing Example

2. DLCIs (or VPIVCI) assigned on external links.

Network Routing Example

3. Routing table at network node "A"

Network Routing Example

- Routing Table at node "B"

Routing Table Issues

∇ Algorithmic vs. manual generation
v Most networks "selfconfigure"
v External vs. network routing
v "Neighbor Node" vs. global routing
v "Source Routing"

Routing Table Issues

\checkmark Algorithmic vs. manual generation
∇ When to reroute

- Link / equipment failure
- Network congestion (circuit vs. packet)
- Reoptimization

$x^{2 \times 4}$

Routing Table Issues

\checkmark Algorithmic vs. manual generation
\checkmark When to reroute
∇ PVC vs. SVC

- PVC changes \& generates tables at network operator request
- SVC changes \& generates tables at user request

Routing Table Issues

\checkmark Algorithmic vs. manual generation
\checkmark When to reroute
\checkmark PVC vs. SVC
∇ Connection /
Connectionless

- Semi-permanent vs. dynamic routing tables
v LAN vs. WAN issues


```
x+x
```


Wide-Area Routing Issues

- Multicast
- Muticast vs. Broadcast
- Groups may be defined
- Administration in large networks
- Global Addressing
- Usefull in small networks
- Initial option for frame relay
"Look like" connectionless

Broadband Switching and Routing

F Frame and Cell header details
∇ Wide area routing example and issues
F Frames versus cells: Summary

Banyan Switching

∇ Often associated with ATM

- Switch -- not network -architecture

- "Non-blocking" so long as paths are different
∇ Doesn't necessarily imply
"cut-through" routing

边 CH^{3+2}

Two Examples

Frame vs. Cell Switching

- Same basic function for switching frames and cells
- Cell switching has lower delay per node

Switches generally must accept a full PDU, process/switch the PDU, and retransmit the the PDU
Delay is proportional to the "PDU Time"
PDU Time = PDU length $/$ Facility speed

Freeze-out Time at Various Speeds

Freeze-out Time at Various Speeds

Frame vs. Cell Switching

- Overhead
- Cell overhead is fixed
- Frame overhead is variable
- Frames have ability to vary maximum frame size to balance delay versus overhead
- Cell size must be chosen carefully

```
4y+
```


Overhead per Cell Size

Overhead per Cell Size

Cell Size Trade-offis

Short cells	Long cells
Short "fill times"	Good for overhead
Small "last cells"	
Short cell freeze-out	

Frame vs. Cell Issues

- Should one check the PDU integrity at intermediate Nodes?
- Easy to do with frame switch; more difficult (for entire PDU) with a cell switch
Factor: Link reliability
Should one check for frame-level discard eligibility at intermediate nodes?
- Factor: Ability to discard ALL of a PDU

Fantor: "Edge" control of network

Frame vs. Cell Issues

How important is the PDU delay?

- Is there "real time" traffic?
- What is the maximum PDU length?
- What is the minimum facility speed?
- How many intermediate nodes? (Delay is per node)
- Price of technology, targeted speeds \& applications, and network "religion"

	Frame Switch	Cell Switch
	Simple	More complex
	More complex	Simpler
Switching concept	Higher	Lower
Technology	No	Yes
Inherent delay	High	Lower
Segmentation	Usually lower	Usually higher
Bandwidth efficiency	No	Yes
Overhead	Not explored	Good
Predictable delay	Possible	Difficult
Voice capabilities	Simpler	More difficult
Intermed. discard	Software	Hardware
Congestion ctl.	PVC/SCV	PVC/SvC
Primary technology		
Connections		

[^0]: $\sin _{4} \times 2$

